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! Understand Clustering Properties of Pre-trained Language Models 

● In-domain Data Augmentation using pre-trained embeddings 
‣ Distance-based Retrieval 
‣ Binary Classification Fine-tuning    

● Application to Neural Machine Translation 

Overview



Motivation

● High quality data is a key aspect in training ML models 

● Real-world NLP problems -> we may not have access to sufficient in-domain labelled data 

● Massive pre-trained models -> great progress on many NLP benchmarks 

● How can we make use of the nice properties of pre-trained models like BERT to 
augment our in-domain data? 



Preliminary Experiments



Pilot Study - Dataset

● Textual data in five diverse domains:  
‣ Movie subtitles 
‣ Medical text 
‣ Legal text 
‣ Translations of the Koran 
‣ IT-related text 

● Sample 2000 distinct sentences from each domain -> cluster embeddings  

● Here, different topics are referred to different domains 



PCA Visualization

● Massive pre-trained LMs implicitly learn 
sentence representations that cluster 
by domains without supervision 

● Utilize this property for data 
augmentation 



Clustering
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Quantifying the Clustering Property

● Need a quantitative way to evaluate the “goodness” of the resulting clusters 

● Note that in these experiments, we have true labels 

● Purity Metric:  
● Each cluster is assumed to have the label corresponding to the most common 

class of the sentences in that cluster 
● Compute the accuracy according to this majority-based assignment. 



Quantifying the Clustering Property

● MLM-based models dominate 
● Reason: MLM-based models use the entire sentence context  

‣ while the auto-regressive models only use the past context and word2vec uses a limited 
window context 

● Using PCA improved performance in most cases



Analyzing Incorrect Assignments

● Some of the mis-assignments make sense 

● Usually shorter —> maybe due to the lack 
of sufficient contextual information 



Cross-Domain NMT Experiments

● Without domain data selection  

● Train domain-specific models for each of the domains  
● Evaluate each model across the different domain test sets,  

● Understand the effect of training with different domains on the downstream MT 
performance 

● Transformer Encoder Decoder (Vaswani et. al, 2017) 



Cross-Domain NMT Results

● Trained on IT: Tested on Medical vs. Tested on Koran 
● Preliminary visual analysis can be a useful tool for understanding the relationship between 

diverse datasets (compatible domains)



Cross-Domain NMT Results

● In-domain training data is best for 
each domain (even better than using 
all-available data) 

● Using the right data is critical for 
achieving good performance on an 
in-domain test set, and more data 
is not necessarily better 

● Koran test set: Training on all the 
available data helped (Because 
training data size was considerably 
small for this domain)



Domain Data Selection



Domain Data Selection

● Task of selecting the most appropriate data for a domain from a large 
corpus, given a smaller set (~2000) of in-domain data 

● Use cases: 
‣ Train a domain-specific model from scratch  
‣ Fine-tune a pre-trained general-domain model 
‣ Prioritize data for annotation as in an Active-Learning framework 



Method 1: Distance Based Retrieval

● First compute a query vector  
● Element-wise average over the vector representations of all the 

sentences in the small in-domain set (~2000).  

● Retrieve the most relevant sentences from the large general-domain 
training set 
● By computing the cosine similarity of each sentence with the query 

vector and ranking the sentences accordingly 
● Pick top-K sentences to augment the in-domain dataset



Method 2: Binary Classification Fine-Tuning
● Fine- tune the pretrained LM (e.g. BERT) for binary classification: 

● Use the in-domain sentences as positive examples 
● Randomly sampled sentences (from a subset of rest of unlabelled data) as negative 

examples 
● For dataset augmentation, apply this classifier on the general-domain data set and 

pick the sentences that are classified as positive as in-domain 
● or choose the top-K sentences as ranked by the classifier output probability. 

● Negative Sampling with Pre-ranking 
● Problem:  random negative samples deteriorate the classifier performance.  
● Instead, perform a biased sampling of negative examples.  

● First rank the general-domain data using the Domain-Cosine (Method-1), and 
then sample negative examples from the bottom two-thirds. 

● Classifier obtains better precision



Baseline (Moore and Lewis, 2010) 

● For each candidate sentence, compute: 
● L1: the log-likelihood according to a domain-specific language model, 
● L2: the log-likelihood a non-domain-specific (general) language model 
● Ranked sentences by L1-L2 the difference in log-likelihood 

● Pick top-K candidate sentences 

● It is based on simple n-gram language models  
● Cannot generalize beyond the n-grams that are seen in the in-domain set.  
● In addition, it is restricted to the in-domain and general-domain datasets it is 

trained on, which are usually small.  
● On the contrary, pre-trained LMs are trained on massive amounts of text



Experiments

● 2000 in-domain sentences from each domain.  

● For the general-domain corpus, concatenate the training data from all domains ~1.4M 

● On NMT task, compare their model to 4 approaches:  
1. Moore and Lewis (2010) Baseline 
2. A random selection baseline 
3. An oracle which is trained on all the available in-domain data (access to true labels) 
4. The model trained on all the domains concatenated



Results

● Results are appealing given that only 2000 in-domain sentences were used for 
selection for each domain out of 1.45 million sentences.



Conclusions



Summary

! Clustering Properties of Pre-trained Language Models 

● In-domain Data Augmentation using pre-trained embeddings 
‣ Distance-based Retrieval 
‣ Binary Classification Fine-tuning    

● Application to Neural Machine Translation  

● For text classification: Rather than simply using manually curated keyword list to 
identify similar text for augmenting training data, use pre-trained LM embeddings 

● Would this work for paragraph / document level embeddings ? 



Thank You 
Questions?


