
Unsupervised Domain Clusters in
Pretrained Language Models

ACL 2020

! Understand Clustering Properties of Pre-trained Language Models

● In-domain Data Augmentation using pre-trained embeddings
‣ Distance-based Retrieval
‣ Binary Classification Fine-tuning

● Application to Neural Machine Translation

Overview

Motivation

● High quality data is a key aspect in training ML models

● Real-world NLP problems -> we may not have access to sufficient in-domain labelled data

● Massive pre-trained models -> great progress on many NLP benchmarks

● How can we make use of the nice properties of pre-trained models like BERT to
augment our in-domain data?

Preliminary Experiments

Pilot Study - Dataset

● Textual data in five diverse domains:
‣ Movie subtitles
‣ Medical text
‣ Legal text
‣ Translations of the Koran
‣ IT-related text

● Sample 2000 distinct sentences from each domain -> cluster embeddings

● Here, different topics are referred to different domains

PCA Visualization

● Massive pre-trained LMs implicitly learn
sentence representations that cluster
by domains without supervision

● Utilize this property for data
augmentation

Clustering

Sentence vectors

PCA

Gaussian Mixture
Models

GMM (k=5, 10, 15)

Quantifying the Clustering Property

● Need a quantitative way to evaluate the “goodness” of the resulting clusters

● Note that in these experiments, we have true labels

● Purity Metric:
● Each cluster is assumed to have the label corresponding to the most common

class of the sentences in that cluster
● Compute the accuracy according to this majority-based assignment.

Quantifying the Clustering Property

● MLM-based models dominate
● Reason: MLM-based models use the entire sentence context

‣ while the auto-regressive models only use the past context and word2vec uses a limited
window context

● Using PCA improved performance in most cases

Analyzing Incorrect Assignments

● Some of the mis-assignments make sense

● Usually shorter —> maybe due to the lack
of sufficient contextual information

Cross-Domain NMT Experiments

● Without domain data selection

● Train domain-specific models for each of the domains
● Evaluate each model across the different domain test sets,

● Understand the effect of training with different domains on the downstream MT
performance

● Transformer Encoder Decoder (Vaswani et. al, 2017)

Cross-Domain NMT Results

● Trained on IT: Tested on Medical vs. Tested on Koran
● Preliminary visual analysis can be a useful tool for understanding the relationship between

diverse datasets (compatible domains)

Cross-Domain NMT Results

● In-domain training data is best for
each domain (even better than using
all-available data)

● Using the right data is critical for
achieving good performance on an
in-domain test set, and more data
is not necessarily better

● Koran test set: Training on all the
available data helped (Because
training data size was considerably
small for this domain)

Domain Data Selection

Domain Data Selection

● Task of selecting the most appropriate data for a domain from a large
corpus, given a smaller set (~2000) of in-domain data

● Use cases:
‣ Train a domain-specific model from scratch
‣ Fine-tune a pre-trained general-domain model
‣ Prioritize data for annotation as in an Active-Learning framework

Method 1: Distance Based Retrieval

● First compute a query vector
● Element-wise average over the vector representations of all the

sentences in the small in-domain set (~2000).

● Retrieve the most relevant sentences from the large general-domain
training set
● By computing the cosine similarity of each sentence with the query

vector and ranking the sentences accordingly
● Pick top-K sentences to augment the in-domain dataset

Method 2: Binary Classification Fine-Tuning
● Fine- tune the pretrained LM (e.g. BERT) for binary classification:

● Use the in-domain sentences as positive examples
● Randomly sampled sentences (from a subset of rest of unlabelled data) as negative

examples
● For dataset augmentation, apply this classifier on the general-domain data set and

pick the sentences that are classified as positive as in-domain
● or choose the top-K sentences as ranked by the classifier output probability.

● Negative Sampling with Pre-ranking
● Problem: random negative samples deteriorate the classifier performance.
● Instead, perform a biased sampling of negative examples.

● First rank the general-domain data using the Domain-Cosine (Method-1), and
then sample negative examples from the bottom two-thirds.

● Classifier obtains better precision

Baseline (Moore and Lewis, 2010)

● For each candidate sentence, compute:
● L1: the log-likelihood according to a domain-specific language model,
● L2: the log-likelihood a non-domain-specific (general) language model
● Ranked sentences by L1-L2 the difference in log-likelihood

● Pick top-K candidate sentences

● It is based on simple n-gram language models
● Cannot generalize beyond the n-grams that are seen in the in-domain set.
● In addition, it is restricted to the in-domain and general-domain datasets it is

trained on, which are usually small.
● On the contrary, pre-trained LMs are trained on massive amounts of text

Experiments

● 2000 in-domain sentences from each domain.

● For the general-domain corpus, concatenate the training data from all domains ~1.4M

● On NMT task, compare their model to 4 approaches:
1. Moore and Lewis (2010) Baseline
2. A random selection baseline
3. An oracle which is trained on all the available in-domain data (access to true labels)
4. The model trained on all the domains concatenated

Results

● Results are appealing given that only 2000 in-domain sentences were used for
selection for each domain out of 1.45 million sentences.

Conclusions

Summary

! Clustering Properties of Pre-trained Language Models

● In-domain Data Augmentation using pre-trained embeddings
‣ Distance-based Retrieval
‣ Binary Classification Fine-tuning

● Application to Neural Machine Translation

● For text classification: Rather than simply using manually curated keyword list to
identify similar text for augmenting training data, use pre-trained LM embeddings

● Would this work for paragraph / document level embeddings ?

Thank You 
Questions?

