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Background - Language Model Pre-training

BERT  
(Devlin et al., 2018) 

Image Source: https://jalammar.github.io/illustrated-bert/

XLNet  
(Yang et al., 2019)



What are such models useful for ? 
• learn contextualized representation of words 

• can work effectively as general purpose sentence encoders 
in text classification with or without further fine-tuning



Is it possible to use a pre-trained language model as a 
general-purpose decoder in a similar fashion ? 

Is there some continuous representation that can be passed to the LM to cause it 
to reproduce a desired sentence ?



Recap - Deep Generative Models  



Variational Auto-Encoders (Kingma and Welling, 2013)

• Encoder, decoder, latent space.  

• At generation time, discard encoder and 

• generate new samples 

• linear interpolation  

• arithmetic operation on z-vectors  

ℒ = − 𝔼
𝚣(𝚗)∼𝚚 [log 𝚙 (𝚡(𝚗) |𝚣(𝚗))] + λ ⋅ 𝙺𝙻 (𝚚 (𝚣(𝚗) |𝚡(𝚗)) ∥𝚙(𝚣))



Generative Adversarial Networks (Goodfellow et. al, 2014)

• Generator and Discriminator  

• Adversarial training 

• Trained till equilibrium  

• At generation time, discard discriminator 

• generate new samples 

• linear interpolation  

• arithmetic operation on z-vectors  

Image Source: http://dx.doi.org/10.1016/j.neuroimage.2018.07.043
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Latent Space Properties

Linear interpolations in the noise space into semantically meaningful non-linear interpolations in the image space 

- Linear arithmetic in the noise space  

- because of the ability to disentangle factors of variation



Generative Latent Optimization (GLO, Bojanowski et al, 2018)

• Is it possible achieve desirable properties of GANs without adversarial training ? 

• An auto-encoder where the latent representation is not produced by a parametric encoder, but 
learned freely in a non-parametric manner 

Training Objective :   

• Jointly optimizes the z_i and the model parameters θ with stochastic gradient descent 

• Demonstrate similar levels of latent space properties
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Recurrent Language Models

!

• standard autoregressive RNN based training  

• stochastic gradient decent with negative log likelihood loss 

• Once learning is complete, a LM can be used in two ways: 

1. To score - compute the log-probability of a newly observed sentence 

2. To generate a new sentence, conditioned on a few tokens (either greedy or beam search)

𝚙 (𝚡𝟷, …, 𝚡𝚃) =
𝚃

∏
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Defining the Sentence Space

• Train the RNN-LM on a large text corpus 

• Fix the weights of the LM: 

• Is it possible to recover an unseen sentence ? 

• Does there exist a representation z, that has all information 
corresponding the above sentence ?



Feeding z to the Decoder

• Add bias terms to the previous hidden and cell state at each time step (d-dimensional LSTM)

Case I - dim(z) < d Case II - dim(z) > d 



Using the sentence space

Forward Estimation (X → Z): 

• estimate z by maximizing the log-probability of the given sentence under this modified model, 

while fixing the original parameters θ 

• highly non-convex, potentially leading to multiple approximately optimal z’s.  

• use nonlinear conjugate gradient method with a limit of 10k iterations

�̂� = argmax
𝚣∈𝒵

𝚃

∑
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log 𝚙 (𝚡𝚝 |𝚡<𝚝, 𝚣)



Using the sentence space

Backward Estimation (Z → X): 

• Given a vector z, estimate the most plausible sentence: (x1, . . . , xT) 

• This is a combinatorial optimization problem and cannot be solved easily! 

• Instead use beam search approximation  

         - to choose the best sentence after decoding multiple of them



Evaluation

• Recoverability: 

• how much information about the original sentence x = (x1, . . . , xT) ∈ X is preserved in the 

re-parameterized sentence space Z 

• First forward-estimate the sentence vector z ∈ Z given x ∈ X  

• Then, reconstruct the sentence  from the estimated z via backward estimation ̂x



Evaluation

• Compare the original sentence to the reconstructed sentence 

1. Exact Match (EM) 

2. Prefix Match (PM): longest consecutive sequence of tokens that are perfectly recovered 

from the beginning of the sentence divided by the sentence length. 

3. BLEU: based on n-gram overlap  

• What is the minimum dimension d of the LM needed to achieve a specified recoverability τ 

under the model θ ? 

𝚃

∑
𝚝=𝟷

𝕀 (𝚡𝚝 = �̂�𝚝)/𝚃



Experimental Setup

Corpus:  
LM trained on 50M sentences from English Gigaword corpus, ~1.8M for validation and test 

Model: 
2-layer LSTM: 256d (Small) | 512d (Medium) | 1024d (Large) 

Sentence space: 
- 128, 256, 512, 1024, 2048, 4096, 8192, 16384 and 32768 dimensions 
- 10 random initializations of z, 10 random projection matrices for the optimization procedure



Results and Analysis

• Model capacity defined by  
• Recoverability increases as  increases, until . 
• Nearly perfect recoverability for the large model when  achieving EM ≥ 99 
• LM trained with more data (50M vs 10M sentences), tends to have better recoverability 

𝚍 * = 𝟸𝚍𝚕
𝚍 * 𝚍′ = 𝚍 *

𝚍′ = 𝟺𝟶𝟿𝟼



Results and Analysis

Effective Dimension of the Sentence Space (recoverability EM > 0.8): 
- Large model : 4096d ;  slight degradation when increasing beyond that 
- Medium model : 2048d ; no real recoverability improvements when increasing beyond that 
- Small model : 8192d which is much greater than  

Negative correlation between recoverability and sentence length 

Sources of Randomness 
Two points of stochasticity in the proposed framework: 

- z initialization and resulting non-convexity of the optimization procedure in forward estimation 
- the sampling of a random projection matrix Wz 
- small standard deviations => these sources of randomness have minimal impact on 

recoverability 

𝚍 * = 𝟺𝟶𝟿𝟼



Summary of Findings

• Able to generate held-out sentences near perfect recoverability (with sufficient model 

capacity) 

• Recoverability increases with the dimension of the re-parametrized space until it reaches 

the model dimension. 

• Recoverability improves with the size and quality of the language model  

• Recoverability is more difficult for longer sentences. 

• Choice of optimizer is crucial



Conclusions

• A frozen pre-trained language model with sufficient capacity can decode an arbitrary 

vector into a sentence  

• Optimization based forward estimation 

• Beam search approximation for backward estimation 

• Recoverability metrics  

• Future work: language models beyond plain LSTMs  



Critical View

• Only very simple analyses of changing dimensions of model and sentence space 

• Could have studied if the sentence latent space has useful properties 

              - If certain dimensions correspond to certain attributes (disentanglement) 

              - Interpolation between sentences 



Thank You


