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Background - Language Model Pre-training
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Image Source: https://jalammar.github.io/illustrated-bert/ (Yang et al., 2019)




What are such models useful for 7

e |earn contextualized representation of words

® can work effectively as general purpose sentence encoders
N text classification with or without further fine-tuning



s it possible to use a pre-trained language model as a
general-purpose decoder in a similar fashion “

|s there some continuous representation that can be passed to the LM to cause it
to reproduce a desired sentence ?



Recap - Deep Generative Models




Variational Auto-Encoders Kingma and Welling, 2013)

® [Encoder, decoder, latent space.
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e At generation time, discard encoder and
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® [inear Interpolation

Y =— E _logp (X(n) | z(n))_ + A - KL (q_ (z(n) | X(n)) ||p(z))

e arithmetic operation on z-vectors



Generative Adversarial Networks (Goodfellow et. al, 2014)
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e arithmetic operation on z-vectors min max [k, plogd(x) + [k, (1 —logd(g(z)))
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Latent Space Properties

Linear interpolations in the noise space into semantically meaningful non-linear interpolations in the image space

smiling
woman

- Linear arithmetic in the noise space

- because of the abillity to disentangle factors of variation



(Generative Latent OptimizatiOn (GLO, Bojanowski et al, 2018)

s It possible achieve desirable properties of GANs without adversarial training 7

An auto-encoder where the latent representation is not produced by a parametric encoder, but
learned freely In a non-parametric manner

o |
Training Objective : min — min ¢ (gg (zi), Xi)
oc® N * z.€ZF

i=1
Jointly optimizes the z_i and the model parameters 6 with stochastic gradient descent

Demonstrate similar levels of latent space properties



Recurrent Language Models

Hp (Xt | X4, ...,Xt_l)

T
t=1

p (X4, .. %)

e standard autoregressive RNN based training
e stochastic gradient decent with negative log likelihood loss
e (Once learning is complete, a LM can be used in two ways:
1. To score - compute the log-probability of a newly observed sentence

2. 10 generate a new sentence, conditioned on a few tokens (either greedy or beam search)



Defining the Sentence Space

e [rain the RNN-LM on a large text corpus

e [ix the weights of the LM:

7z » Fixed Decoder —> the cat sat on the mat
Learnable
sentence o |sit hle t T .
representation S IT POSSIDIE 1O recover an unseen sentence

e [oes there exist a representation z, that has all information
corresponding the above sentence ?




Feeding z to the Decoder

e Add bias terms to the previous hidden and cell state at each time step (d-dimensional LSTM)
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Case | - dim(z) < d Case ll - dm(z) > d

hi—1 = fo(he—2 + 2/, 24—1)
~ \|softmax(h, ,Z2)Z", ifdim(z) > d*




Using the sentence space

Forward Estimation (X — Z):

e cstimate z by maximizing the log-probability of the given sentence under this modified model,

while fixing the original parameters 6

T
Z = argmaxz logp (Xt | X+, z)

e highly non-convex, potentially leading to multiple approximately optimal z’s.

® Use nonlinear conjugate gradient method with a limit of 10k iterations



Using the sentence space

Backward Estimation (Z — X):
e (iven a vector z, estimate the most plausible sentence: (x1, ..., XT)
e [hisis a combinatorial optimization problem and cannot be solved easily!

® |nstead use beam search approximation

- t0 choose the best sentence after decoding multiple of them



Evaluation

e Recoverability:

e how much information about the original sentence x = (x1, ..., XT) € X is preserved in the

re-parameterized sentence space /

e [irst forward-estimate the sentence vector z € Z given X € X

e Then, reconstruct the sentence X from the estimated z via backward estimation




Evaluation

e (Compare the original sentence to the reconstructed sentence

1. Exact Match (EM)

D 1 (x,=%,)/T

t=1

2. Prefix Match (PM): longest consecutive sequence of tokens that are perfectly recovered

from the beginning of the sentence divided by the sentence length.

3. BLEU: based on n-gram overlap

¢ \Vhat is the minimum dimension d of the LM needed to achieve a specified recoverabillity T

under the model 6 7



Experimental Setup

Corpus:
LM trained on 50M sentences from English Gigaword corpus, ~1.8M for validation and test

Model:
2-layer LSTM: 256d (Small) | 512d (Medium) | 1024d (Large)

Table 1: Language modeling perplexities on English Gigaword for the models under study

I Train| = 10M I Train| = 50 M
Model d || Dev Ppl. TestPpl. | Dev Ppl. Test Ppl.
SMALL 256 122.9 125.2 77.2 79.2
MEDIUM 212 89.6 91.3 62.1 63.5
LARGE 1024 65.9 67.7 47.4 48.9

Sentence space:
- 128, 256, 512, 1024, 2048, 4090, 8192, 16384 and 32768 dimensions
- 10 random Iinitializations of z, 10 random projection matrices for the optimization procedure



Results and Analysis

Model capacity defined by d * = 2d1
Recoverability increases as d * increases, untild’ = d * .

Nearly perfect recoverability for the large model when d’ = 4096 achieving EM > 99
M trained with more data (50M vs 10M sentences), tends to have better recoverability
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Results and Analysis

—ffective Dimension of the Sentence Space (recoverability EM > 0.8):

- Large model : 4096d ; slight degradation when increasing beyond that
- Medium model : 2048d ; no real recoverability improvements when increasing beyond that

- Small model : 8192d which is much greater than d * = 4096

Negative correlation between recoverability and sentence length

Sources of Randomness
Two points of stochasticity in the proposed framework:

-z Initialization and resulting non-convexity of the optimization procedure In forward estimation
- the sampling of a random projection matrix Wz

- small standard deviations => these sources of randomness have minimal impact on
recoverabllity




Summary of Findings

Able to generate held-out sentences near perfect recoverability (with sufficient model

capacity)

Recoverabllity increases with the dimension of the re-parametrized space until it reaches

the model dimension.

Recoverabllity improves with the size and quality of the language model

Recoverability Is more difficult for longer sentences.

Choice of optimizer is crucial



Conclusions

A frozen pre-trained language model with sufficient capacity can decode an arbitrary
vector into a sentence

Optimization based forward estimation

Seam search approximation for backward estimation

Recoverabllity metrics

Future work: language models beyond plain LSTMs




Critical View

e Only very simple analyses of changing dimensions of model and sentence space
e (Could have studied if the sentence latent space has useful properties
- If certain dimensions correspond to certain attributes (disentanglement)

- Interpolation between sentences
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