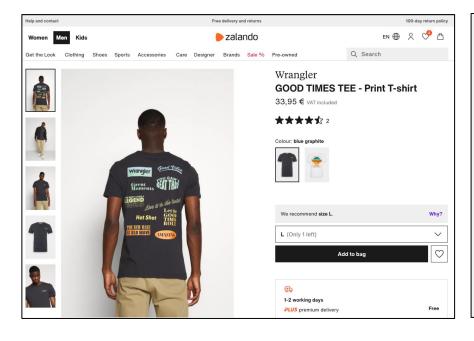
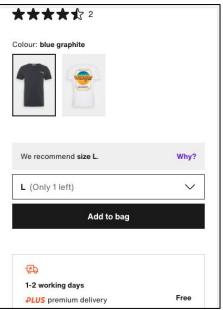

Knowing When You Don't Know in Online Fashion: An Uncertainty Aware Size Recommendation Framework

Hareesh Bahuleyan, Julia Lasserre, Leonidas Lefakis and Reza Shirvany





Outline

- Personalized Size Recommendation
- Dataset Noise Challenges
- Key Contributions
 - → Measuring Prediction Uncertainty
 - → Uncertainty-Aware Training
- Experiments and Results
- Summary and Conclusions

Personalized Size Recommendation Task

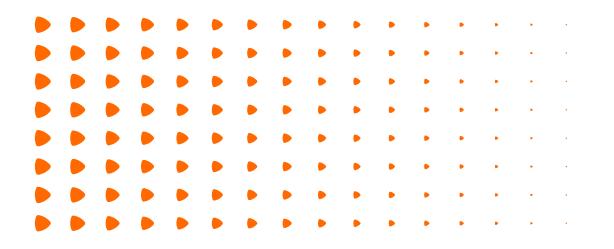
Personalized Size Recommendation Task

Supervised learning problem:

Each training instance consists of:

- Support purchases: sequence of articles previously purchased by the customer
- Query article
- Ground truth size of the query article
- Test time: Predict the size for a new query article
- Deep Learning Model: <u>Attention Gets You the Right Size and Fit in Fashion</u> [RecSys 2020: FashionXRecsys Workshop]

October, 2021


Dataset Noise Challenges

- Style and fit preferences can differ among customers
- Differences in sizing systems across countries, brands, etc.
- Vanity sizing to boost customer esteem
- Multiple users behind the same customer account
- And more ...

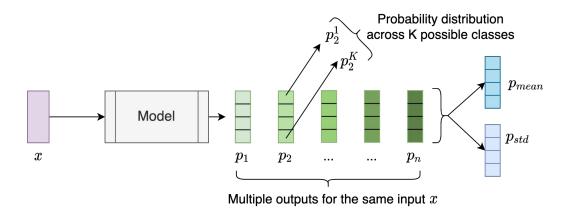
Key Contributions

- Uncertainty Quantification for Size and Fit Prediction
- Uncertainty-Aware Training

Measuring Prediction Uncertainty

Uncertainty Based Decision Making

- When interacting with customers it is important to know the degree of uncertainty associated with our ML model predictions
- Might be better to take an alternate action in case of high uncertainty
- Enables building trust with customers → positive feedback loop where they interact more with our systems


Uncertainty Quantification Metrics

- Maximum Softmax Probability (max proba)
 - Probability assigned to the predicted size
- Predictive Entropy (entropy)
 - Shannon entropy of the output softmax distribution
- And more ...

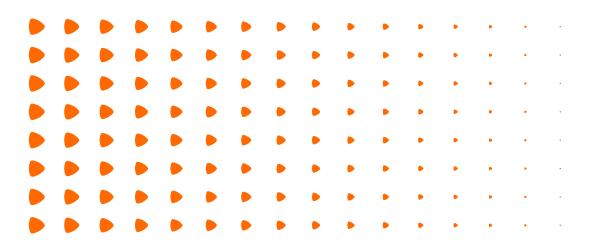
October, 2021

Uncertainty Quantification Metrics (Monte-Carlo Dropout)

- Monte-Carlo Dropout at Test Time [Gal et al. (2016)]
- Normalized Standard Deviation of the *Predicted Size* (stddev pred)
- Normalized Standard Deviation of the True Size (stddev true)

Comparison of Uncertainty Metrics

Size Prediction Accuracy at Different Test Set Coverage Levels


	Coverage Level		
Uncertainty Metric	ic 80% 60%		
max_proba	66.92	72.28	
entropy	ntropy 66.72 71.57		
stddev_pred	65.47	70.34	

October, 2021

Comparison of Uncertainty Metrics

Size Prediction Accuracy at Different Coverage Levels

	Coverage Level		
Uncertainty Metric	80%	60%	
max_proba	66.92	72.28	
entropy	66.72	71.57	
stddev_pred	65.47	70.34	
stddev_true	74.74	90.01	

Uncertainty Aware Training Two Approaches

Approach 1: Hard Weighting by Dataset Pruning

- Four stages:
 - 1. K-fold training
 - 2. Uncertainty estimation based on stddev true
 - 3. Dataset pruning (of most uncertain instances)
 - 4. Re-training on the cleaner subset
- Decide on percentage of dataset pruned

Approach 2: Soft Weighting by Instance Re-weighting

- Three stages:
 - 1. K-fold training
 - 2. Uncertainty estimation based on stddev_true

Approach 2: Soft Weighting by Instance Re-weighting

- Three stages:
 - 1. K-fold training
 - 2. Uncertainty estimation based on stddev_true
 - 3. Retraining with instance reweighting

ReweightedLoss =
$$\exp(-\beta * \sigma_i) * CrossEntropyLoss$$

where σ_i refers to stddev true and β is a hyperparameter

• In-house dataset of 5.7M purchases by 260k customers spanning across 60+ garment categories (upper/lower garments, shoes), 2000+ brands and 1000+ sizes

	Coverage Level	80%	60%
Baseline (Full	Noisy Dataset)	66.92	72.28

• In-house dataset of 5.7M purchases by 260k customers spanning across 60+ garment categories (upper/lower garments, shoes), 2000+ brands and 1000+ sizes

	Coverage Level	80%	60%
Baseline (Full Noisy Dataset)		66.92	72.28
Hard-Weighting	max_proba	66.90	72.44
	stddev_pred	67.26	72.66
	stddev_true	67.11	72.30

• In-house dataset of 5.7M purchases by 260k customers spanning across 60+ garment categories (upper/lower garments, shoes), 2000+ brands and 1000+ sizes

	Coverage Level	80%	60%
Baseline (Full Noisy Dataset)		66.92	72.28
Hard-Weighting	max_proba	66.90	72.44
	stddev_pred	67.26	72.66
	stddev_true	67.11	72.30
Soft-Weighting	max_proba	66.83	72.21
	stddev_pred	67.27	72.52
	stddev_true	67.59	73.04

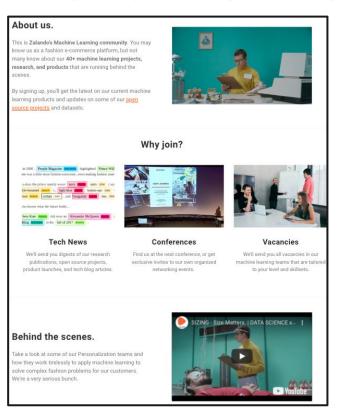
Comparison to other competitive baselines

	Coverage Level	80%	60%
Baseline (Full Noisy Dataset)		66.92	72.28
Soft- Weighting	Deep Abstaining Recommender	67.02	72.60
	Confident Learning	67.76	73.04
	stddev_true	67.59	73.04

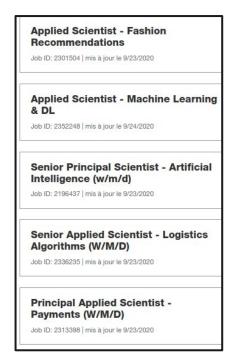
Confident Learning - quadratic complexity in the number of classes

Summary and Conclusions

- Noisy data challenges in personalized size recommendation
- Explored and compared uncertainty metrics
 - stddev true is a strong indicator of prediction uncertainty
- Uncertainty-aware retraining
 - dataset pruning
 - instance level reweighting
- Future work:
 - circumvent multi-stage training
 - apply proposed methodology on other domains



Knowing When You Don't Know in Online Fashion: An Uncertainty Aware Size Recommendation Framework



Join Zalando Machine Learning Community

https://pages.beamery.com/zalando/page/machinelearning

Join us!

Thanks!

jobs.zalando.com

