Variational Autoencoders for Text Generation

Hareesh Bahuleyan

Borealis Al

September 24, 2018

(B)

Overview

2 Variational Autoencoder

æ

イロン イヨン イヨン イヨン

2 Variational Autoencoder

2

イロン イヨン イヨン イヨン

Recurrent Neural Networks

• Text data - expressed as a sequence

RNNs

- Feed inputs in a sequential manner
- The hidden state contains info until t
- $h_t = f(Ux_t + Wh_{t-1}); y_t = Vh_t$
- Weight sharing
- Vanilla RNNs in practice
 - unable to remember the dependencies between inputs which are far apart in the sequence

- Better at capturing long term dependencies
- An entire module (known as a *cell*) with a set of gates to replace f
- Compute a hidden state h_t and a cell state c_t at each timestep

Sequence-to-Sequence Models

- Encoder and Decoder are RNNs with LSTM units
- Hidden state initialization
- Teacher Forcing
- Output Softmax layer

2 Variational Autoencoder

3 Spherical VAEs

2

イロン イヨン イヨン イヨン

Autoencoding (Deterministic)

- Obtain a compressed representation of the data x from which it is possible to re-construct it
- Encoder $q_{\phi}(z|x)$ and Decoder $p_{\theta}(x|z)$ are jointly trained to maximize the conditional log-likelihood
- The latent representation *z* has an arbitrary distribution

Minimize Reconstruction Loss

$$J = -\sum_{n=1}^{N} \sum_{t=1}^{|x^{(n)}|} \log p(x_t^{(n)} | z^{(n)}, x_{< t}^{(n)})$$

Variational Autoencoder [Kingma and Welling, 2013]

- Enforce a distribution on the latent space
- Minimize the Kullback-Leibler (KL) divergence between the learnt posterior and a pre-specified prior: KL(N(μ, σ)||N(0, I))
- Balance between reconstruction and KL penalty term
 - High λ Ignores reconstruction
 - Low λ Deterministic behaviour

Minimize Reconstruction Loss + KL Divergence

$$J = \sum_{n=1}^{N} \left[- \mathop{\mathbb{E}}_{z^{(n)} \sim q} \sum_{t=1}^{|x^{(n)}|} \log p(x_t^{(n)} | z^{(n)}, x_{< t}^{(n)}) + \lambda \cdot \mathsf{KL}(q(z^{(n)} | x^{(n)}) \| p(z)) \right]$$

Reparameterization Trick

KL Divergence between posterior and standard normal prior

$$\mathsf{KL}(\mathcal{N}(\mu,\sigma)||\mathcal{N}(0,I)) = \frac{1}{2}(1 + \log((\sigma^{(n)})^2) - (\mu^{(n)})^2 - (\sigma^{(n)})^2)$$

- Model training via SGD and error backpropagation
- Cannot sample directly from the approximate posterior distribution $\mathcal{N}(\mu,\sigma)$
- Stochastic Node disconnect in the graph
- **Solution**: Sample from fixed distribution $\mathcal{N}(0, I)$ and reparameterize
- $z = \mu + \sigma \otimes \epsilon$ where $\epsilon \sim \mathcal{N}(0, I)$

Hareesh Bahuleyan (Borealis AI)

Training Heuristics

- Training VAEs for text generation is notoriously difficult
- Adopt two training strategies [Bowman et al., 2015]

KL Weight Annealing

- Gradually increase λ from zero to a threshold value
- Deterministic autoencoder \rightarrow Variational autoencoder
- Experiment with different annealing schedules

Word Dropout

- Replace decoder inputs with <UNK> with probability *p*
- Weakens the decoder and encourages the model to encode more information into *z*

Decoder

VAE Variants

- Trained on 80k sentences of the SNLI dataset
- Evaluating reconstruction performance with BLEU scores

•
$$\mathsf{BLEU}$$
- $j = \min\left(1, rac{\mathsf{generated-length}}{\mathsf{reference-length}}
ight) * (\mathsf{precision}_j)$

Random Sampling

- VAEs exhibit interesting properties due to their learnt latent space
- Continuous latent space \implies meaningful sentences
- Discard encoder; Sample from prior $\mathcal{N}(0, I)$ and generate
- New and interesting sentences unseen in the training data

Latent Space

(日) (同) (三) (三)

Linear Interpolation

- To test the continuity of the latent space
- $\mathbf{z}_{\alpha_i} = \alpha_i \cdot \mathbf{z}_A + (1 \alpha_i) \cdot \mathbf{z}_B$ where $\alpha_i \in \left[0, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, 1\right]$
- VAE Smooth transition maintaining syntax and semantics
- DAE Transition is irregular and non-continuous

イロト イヨト イヨト イヨト

Sampling from Neighborhood

- For a given input \boldsymbol{x} , sample the latent vector as $\boldsymbol{z} = \boldsymbol{\mu} + 3\boldsymbol{\sigma}\otimes\boldsymbol{\epsilon}$
- VAE generates diverse sentences, however topically similar to the input.
- DAE latent space has empty regions

< 3 > < 3 >

Deterministic AE	Variational AE			
Input Sentence: a dog with its mouth open is running .				
a dog with its mouth is open running . a dog with its mouth is open running . a dog with its mouth is open running .	a dog with long hair is eating . a guy and the dogs are holding hands a dog with a toy at a rodeo .			
Input Sentence: there are people sitting on the side of the road				
there are people sitting on the side of the road there are people sitting on the side of the road there are people sitting on the side of the road	the boy is walking down the street . there are people standing on the street outside the police are on the street corner .			

VAE Bypassing Phenomenon

- Design considerations
- *z* is sampled and fed to the decoder
- Encode useful information in the latent space

- With bypass connection, the decoder has direct deterministic access to the source info
- Latent space ignored, KL divergence doesn't act as a regularizer

()

Diversity Evaluation Metrics

For a given input \boldsymbol{x} , generate multiple outputs $\boldsymbol{y}_1, \boldsymbol{y}_2, ..., \boldsymbol{y}_k$

Entropy

- Compute unigram probability p(w) of each word in the generated set
- $H = -\sum_{w} p(w) \log p(w)$
- More entropy \implies more randomness \implies more diversity

Distinct Scores

 Distinct-1 = Count of distinct unigrams Total unigram count
 Distinct-2 = Count of distinct bigrams Total bigram count

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Effect on Latent Space

- VAE without hidden state initialization generates diverse outputs
- Bypass connection degrades the model to a deterministic AE

VAE with Bypass VAE without Bypass					
Entropy	2.004	2.686			
Distinct-1	0.099	0.302			
Distinct-2	0.118	0.502			

VAE with Bypass	VAE without Bypass			
Input Sentence: the men are playing musical instruments				
the men are playing musical instruments the man is playing musical instruments the men are playing musical instruments	the men are playing video games the men are playing musical instruments the musicians are playing musical instruments			
Input Sentence: a child holds a shovel on the beach .				
a child holds a shovel on the beach . a child holds a shovel on the beach . a child holds a shovel on the beach .	a child playing with the ball on the beach . a child holding a toy on the water . a child holding a toy on the beach .			
a child holds a shovel on the beach .	a child holding a toy on the beach .			

2

<ロ> (日) (日) (日) (日) (日)

- VAE with multivariate Gaussian prior and posterior has issues associated with KL term collapsing to zero (especially for text generation)
- Instead use a **von Mises-Fisher** distribution to circumvent this issue Davidson et al. [2018], Xu and Durrett [2018]

von Mises-Fisher Distribution

Places a distribution over a **unit** hypersphere

- mean μ , which acts as a location parameter (denotes where in the hyperspace is it located), magnitude needs to be 1, since its a unit sphere
- concentration parameter κ the concentration of data probability happens in the direction of μ

von Mises-Fisher Distribution

$$f_d(x;\mu,\kappa) = C_d(\kappa) \exp(\kappa \mu^T x)$$
$$C_d(\kappa) = \frac{\kappa^{d/2-1}}{(2\pi)^{d/2} I_{d/2-1}(\kappa)}$$

- κ = 0 corresponds to a uniform distribution of datapoints on the sphere
- Larger values of κ corresponds to more 'normal-like' distribution of the data points.

Spherical VAE Model Details

- Prior: uniform distribution vMF(.,κ = 0)
- Posterior: vMF(μ, κ = fixed) -Only μ is learnt from the encoder output

Figure 2: Visualization of optimization of how q varies over time for a single example during learning. In the Gaussian case, the KL term tends to pull the model towards the prior (moving from μ, σ to μ', σ'), whereas in the vMF case there is no such pressure towards a single distribution.

- 4 回 ト - 4 回 ト

vMF KL Divergence

KL divergence With $vMF(\cdot, 0)$ as our prior, the KL divergence is:⁴

$$\begin{aligned} \mathrm{KL}(\mathrm{vMF}(\mu,\kappa)||\mathrm{vMF}(\cdot,\mathbf{0})) &= \kappa \frac{I_{d/2}(\kappa)}{I_{d/2-1}(\kappa)} \\ &+ \left(\frac{d}{2} - 1\right)\log\kappa - \frac{d}{2}\log(2\pi) - \log I_{d/2-1}(\kappa) \\ &+ \frac{d}{2}\log\pi + \log 2 - \log\Gamma\left(\frac{d}{2}\right) \end{aligned}$$

- Critically, this only depends on κ , not on μ .
- κ will be treated as a fixed hyperparameter
- This is strange since it is now like a DAE, since we have the objective function with reconstruction loss + a constant (KL term)
- The KL term only depends on the dimensionality of the latent space!

くほと くほと くほと

Model Details

Figure 3: Visualization of the interaction between κ , KL, and dimensionality in vMF. Cos represents the cosine similarity between μ and samples from vMF_d(μ, κ) which reflects how disperse the distribution is. KL is defined as KL with a uniform vMF prior, KL(vMF_d(μ, κ)||vMF(·, 0)). Higher κ values yield higher cosine similarities, but also higher KL costs.

- Higher dimension ⇒ higher constant KL loss
- Higher κ values yield higher cosine similarities - points are concentrated just around the mean (meaning less disperse is that even desirable?)

Evaluate using PPL and NLL, Compare to Bowman et al. [2015]

	РТВ			Yelp				
Model	Standa	rd	Inputle	ss	Standa	rd	Inputle	ss
	NLL	PPL	NLL	PPL	NLL	PPL	NLĹ	PPL
RNNLM (2016)	100 (-)	116	135 (–)	>600	-	-	-	-
G-VAE (2016)	101 (2)	119	125 (15)	380	-	-	-	-
RNNLM (Ours)	100 (-)	114	134 (–)	596	199 (-)	55	300 (-)	432
G-VAE (Ours)	99 (4.4)	109	125 (6.3)	379	199 (0.5)	55	274 (13.4)	256
vMF-VAE (Ours)	96 (5.7)	98	117 (18.6)	262	198 (6.4)	54	242 (48.5)	134

KL Divergence Comparison

Able to obtain non-zero values of KL divergence (and hence a good latent space), without any dirty engineering tricks

- ×

What does the Latent Space Learn ?

• Experiment

- To understand what the vMF-VAE encodes
- Compute BoW vector = average of word embeddings
- At each time step, they pass on BoW vector along with latebt vector \boldsymbol{z}
- When additional information provided in the form of BoWs, the Gaussian-VAE latent space collapses (since model can choose to ignore it), while their model still performs good
- Another justification to show that their model's latent space learns more than just a simple BoWs
 - Word ordering, better semantics, etc.

Model Setting	$\begin{array}{c} \text{NVRNN} \\ \mu \rightarrow \text{BoW} \text{BoW} \rightarrow \mu \end{array}$		$\begin{vmatrix} \text{NVRNN-BoW} \\ \mu \rightarrow \text{BoW} \end{vmatrix}$	
G-VAE	0.74	0.74	0.32	
v-VAE	0.77	0.57	0.23	

Variational Autoencoder

æ

イロン イヨン イヨン イヨン

Summary and Discussions

- VAEs are generative models from which it is possible to synthesize new data
- Text generation in VAEs are notoriously difficult due to issues associated with KL loss vanishing to zero
- Spherical VAEs address this issue by using vMF distribution instead of Gaussian
- Some critical views:
 - In vMF-VAE, the KL loss terms just acts as an additive constant to the objective function
 - Fixing κ seems to work better than allowing it to be learnt, their claim is when κ is learnable, the KL term will encourage κ to be as low as possible isn't this because their prior has a low κ value, i.e., $\kappa = 0$? No experimental result shown for this!
 - No qualitative analysis of latent space linear interpolation, random sampling as in Bowman et al. [2015]

ヘロト 人間 ト 人 ヨト 人 ヨトー

- Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural* computation, 9(8):1735–1780, 1997.
- Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*, 2013.
- Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy Bengio. Generating sentences from a continuous space. *arXiv preprint arXiv:1511.06349*, 2015.
- Tim R Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M Tomczak. Hyperspherical variational auto-encoders. *arXiv preprint arXiv:1804.00891*, 2018.
- Jiacheng Xu and Greg Durrett. Spherical latent spaces for stable variational autoencoders. *arXiv preprint arXiv:1808.10805*, 2018.

3

イロト 不得 トイヨト イヨト