Music Genre Classification using Machine Learning Techniques

CS 698 - Computational Audio

Hareesh Bahuleyan

Problem Statement

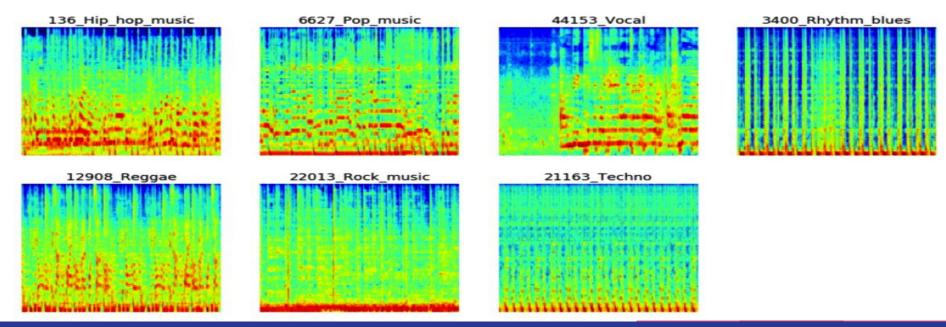
 Music genres are a way to classify music based on rhythmic structure, harmonic content and instrumentation

- Automatically recognition
 - Organize digital libraries
 - Provide recommendations

Data

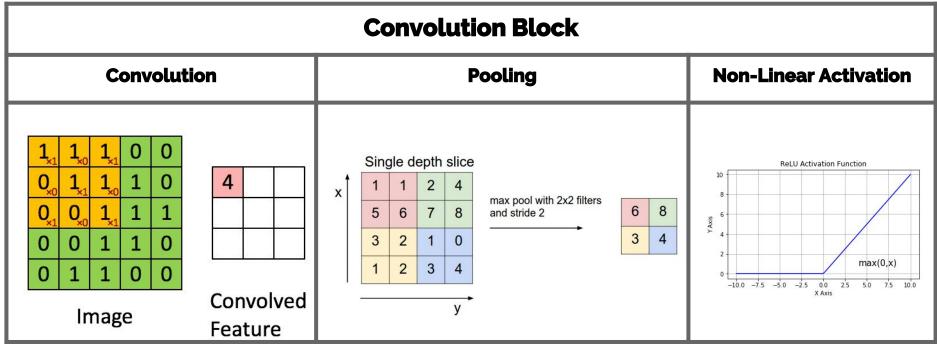
Google Audio Set

- 2.1 Million audio samples (of 10 seconds)
- 527 classes of sounds
- Selected 7 labels

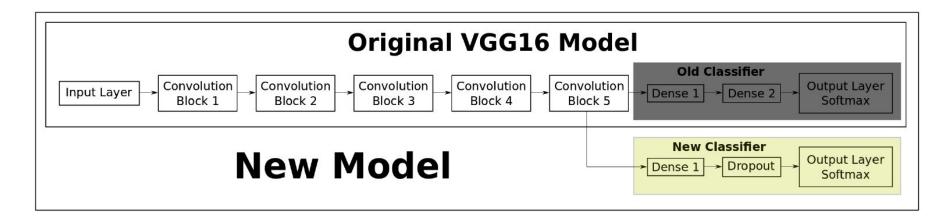

- Not the actual audio, just the YouTubeIDs, start and end times
- 880 KB per wav file,
- Approximately 34 GB data

	Genre	Count		
1	Pop Music	8100		
2	Rock Music	7990		
3	Hip Hop Music	6958		
4	Techno	6885		
5	Rhythm Blues	4247		
6	Vocal	3363		
7	Reggae Music	2997		
	Total	40540		

Convolutional Neural Networks

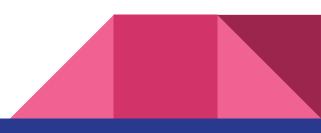

MEL Spectrograms

- 2D colormap representation of the signal
- **STFT**: Window size = 2048, Hop size = 512, Hann window function, Number of MEL bins = 96


CNN - Image Classification

- Consider spectrogram as an image and train a CNN classifier
- Matrix of pixel values 3 channel RGB input

Source: http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/



• Transfer Learning

• Weights of conv base are fixed

• Fine Tuning

• Both conv base and feed-forward network are trainable

Feature Engineering Approaches

Feature Extraction

Time Domain

- 1. Mean
- 2. Variance
- 3. Skewness
- 4. Kurtosis
- 5. Zero Crossing Rate
- 6. Root Mean Square Energy
- 7. Tempo

Frequency Domain

- 1. MEL Frequency Cepstral Coefficients (MFCCs)
- 2. Chroma Features
- 3. Spectral Centroid
- 4. Spectral Band-widths
- 5. Spectral Contrast
- 6. Spectral Roll-offs

Classifiers

- 1. Logistic Regression
- 2. Random Forest
- Support Vector Machines
- 4. Extreme Gradient Boosting

• Total Number of Features = 97

Spectral Features

- Spectral Centroid $f_c = \frac{\Sigma_k S(k) f(k)}{\Sigma_k S(k)}$
- Spectral Band-width $(\Sigma_k S(k)f(k) - f_c)^{\frac{1}{p}}$

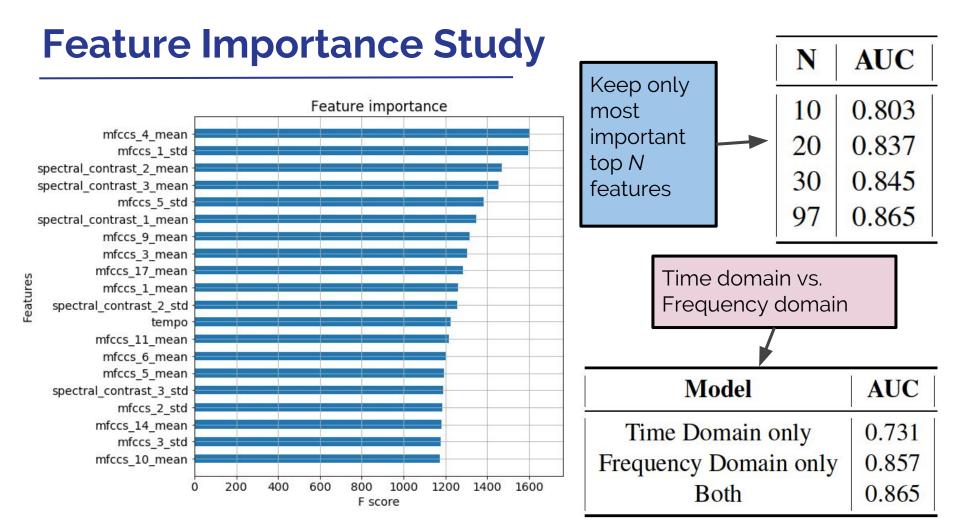
0.5 0.0 -0.5 nitude (energy) 2000 4000 6000 8000 10000 Frequency

- Spectral Contrast
 - Divide spectrum into frequency bands
 - Maximum magnitude Minimum magnitude in each band

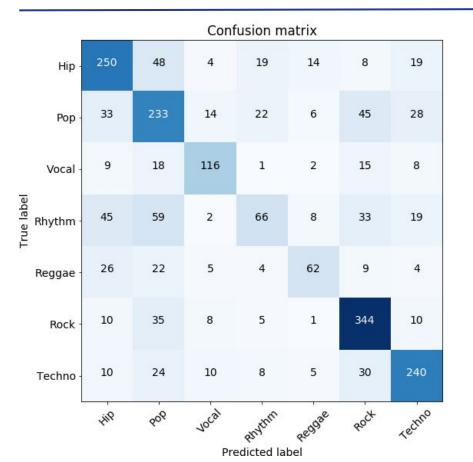
• Spectral Roll-off

• Frequency below which 85% of the total energy in the spectrum lies

Chroma Features


- 12-element feature vector
- Indicates how much energy of each pitch class, {C, C#, D, D#, E, ..., B}

Results


Comparison of Models

• Metrics: Accuracy | F-score | AUC

	Accuracy	F-score	AUC
Spectrogram-based models			
VGG-16 CNN Transfer Learning VGG-16 CNN Fine Tuning Feed-forward NN baseline	0.63 0.64 0.43	0.61 0.61 0.33	0.891 0.889 0.759
Feature Engineering based models	0.43	0.33	0.739
Logistic Regression (LR) Random Forest (RF)	0.53 0.54	0.47 0.48	0.822 0.840
Support Vector Machines (SVM) Extreme Gradient Boosting (XGB)	0.57 0.59	0.52 0.55	0.856 0.865
Ensemble Classifiers			
VGG-16 CNN + XGB	0.65	0.62	0.894

Confusion Matrix

Good at predicting some classes. Eg: Rock

Many mis-classifications for Rhythm blues, Pop genre

Classes are also unbalanced

Thank You