Natural Language Generation with Neural Variational Models

Hareesh Bahuleyan

University of Waterloo

July 26, 2018

3 D (3 D)

Overview

Introduction

2 Background

- 3 Variational Autoencoder
- 4 Variational Encoder-Decoder Models

5 Conclusions

3

Introduction

- 2 Background
- 3 Variational Autoencoder
- Variational Encoder-Decoder Models

5 Conclusions

3

イロト イポト イヨト イヨト

Natural Language Processing

- Enabling computers to effectively interact with humans using natural language
- Manipulation, understanding, interpretation and generation of textual and speech data
- Examples of NLP tasks question answering, sentiment analysis, named entity recognition and machine translation
- This work: Natural Language Generation
 - Syntax
 - Semantics

Source: http://www.contrib.andrew.cmu.
edu/~dyafei/NLP.html

Motivation

 Consider two dialog systems (conversational agent responding to user utterances)

Input: What a	are you doing?
I don't know. I don't know! Nothing. Get out of the way.	Get out of here. I'm going home. Oh, my god! I'm talking to you.
Input: What	is your name?
I don't know. I don't know! I don't know, sir. Oh, my god!	My name is Robert. My name is John. My name's John. My name is Alice.
Input: How	old are you?
l don't know. l'm fine. l'm all right.	Twenty-five. Five. Eight.
I'm not sure.	Ten years old.

Table: Diversity of responses [Li et al., 2015]

- Objective is to generate a diverse set of responses (y) for a given input line (x)
- Approach Neural variational models

Hareesh Bahuleyan (UW)

1 Introduction

2 Background

3 Variational Autoencoder

Variational Encoder-Decoder Models

5 Conclusions

э

- 4 同 6 4 日 6 4 日 6

Deep Learning

- Subfield of machine learning
- Use of artificial neural networks
 - Inspired from neurons in the brain
 - Deep architectures
 - Outperform humans in a number of cognitive tasks
 - Massive amounts of data, powerful hardware
- Perceptron [Rosenblatt, 1958]

A D A D A D A

Feedforward Neural Networks

- Multiple layers
- Non-linear Activation functions
- Forward propagation
- Compute loss
- Weight update by Error Backpropagation
- Stochastic Gradient Descent (SGD) / ADAM

Recurrent Neural Networks

• Text data - expressed as a sequence

RNNs

- Feed inputs in a sequential manner
- The hidden state contains info until t
- $h_t = f(Ux_t + Wh_{t-1}); y_t = Vh_t$
- Weight sharing
- Vanilla RNNs in practice
 - unable to remember the dependencies between inputs which are far apart in the sequence

 y_{t-1}

- Solution: LSTM-RNNs [Hochreiter and Schmidhuber, 1997]
 - Better at capturing long term dependencies
 - An entire module (known as a *cell*) with a set of gates to replace f
 - Compute a hidden state h_t and a cell state c_t at each timestep

Word Embeddings

- Cannot directly input raw text into an ML algorithm
- Need to map the textual data into corresponding numeric representations
- Solution: word2vec fixed vector representations for each word [Mikolov et al., 2013]
- Based on distributional similarity - "words that occur in similar contexts would have similar meaning" Eg. sports and game
- W: words → ℝⁿ, where n is the dimension of each word vector

Sequence-to-Sequence Models

- Encoder and Decoder are RNNs with LSTM units
- Hidden state initialization
- Teacher Forcing
- Output Softmax layer

Background

O Variational Autoencoder

Variational Encoder-Decoder Models

3

イロト イポト イヨト イヨト

Autoencoding (Deterministic)

- Obtain a compressed representation of the data x from which it is possible to re-construct it
- Encoder $q_{\phi}(z|x)$ and Decoder $p_{\theta}(x|z)$ are jointly trained to maximize the conditional log-likelihood
- The latent representation *z* has an arbitrary distribution

Latent Space Encoder $q_{ab}(Z \mid X)$ Decoder $p_{\theta}(X \mid Z)$ X Observed Data Space

Minimize Reconstruction Loss

$$J = -\sum_{n=1}^{N} \sum_{t=1}^{|x^{(n)}|} \log p(x_t^{(n)} | z^{(n)}, x_{< t}^{(n)})$$

Hareesh Bahuleyan (UW)

Variational Autoencoder [Kingma and Welling, 2013]

- Enforce a distribution on the latent space
- Minimize the Kullback-Leibler (KL) divergence between the learnt posterior and a pre-specified prior: $KL(\mathcal{N}(\mu, \sigma)||\mathcal{N}(0, I))$
- Balance between reconstruction and KL penalty term
 - High λ Ignores reconstruction
 - Low λ Deterministic behaviour

Minimize Reconstruction Loss + KL Divergence

$$J = \sum_{n=1}^{N} \left[- \mathop{\mathbb{E}}_{z^{(n)} \sim q} \sum_{t=1}^{|x^{(n)}|} \log p(x_t^{(n)} | z^{(n)}, x_{< t}^{(n)}) + \lambda \cdot \mathsf{KL}(q(z^{(n)} | x^{(n)}) \| p(z)) \right]$$

Training Heuristics

- Training VAEs for text generation is notoriously difficult
- Adopt two training strategies [Bowman et al., 2015]

KL Weight Annealing

- Gradually increase λ from zero to a threshold value
- Deterministic autoencoder \rightarrow Variational autoencoder
- Experiment with different annealing schedules

Word Dropout

- Replace decoder inputs with <UNK> with probability *p*
- Weakens the decoder and encourages the model to encode more information into *z*

VAE Variants

- Trained on 80k sentences of the SNLI dataset
- Evaluating reconstruction performance with BLEU scores

•
$$\mathsf{BLEU-}j = \min\left(1, \frac{\mathsf{generated-length}}{\mathsf{reference-length}}\right) * (\mathsf{precision}_j)$$

Random Sampling

- VAEs exhibit interesting properties due to their learnt latent space
- Continuous latent space \implies meaningful sentences
- Discard encoder; Sample from prior $\mathcal{N}(0, I)$ and generate
- New and interesting sentences unseen in the training data

(日) (同) (三) (三)

Ζ.

Linear Interpolation

- To test the continuity of the latent space
- $\mathbf{z}_{\alpha_i} = \alpha_i \cdot \mathbf{z}_A + (1 \alpha_i) \cdot \mathbf{z}_B$ where $\alpha_i \in \left[0, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, 1\right]$
- VAE Smooth transition maintaining syntax and semantics
- DAE Transition is irregular and non-continuous

< ロト < 同ト < ヨト < ヨト

Sampling from Neighborhood

- For a given input \boldsymbol{x} , sample the latent vector as $\boldsymbol{z} = \boldsymbol{\mu} + 3\boldsymbol{\sigma}\otimes\boldsymbol{\epsilon}$
- VAE generates diverse sentences, however topically similar to the input.
- DAE latent space has empty regions

Deterministic AE	Variational AE
Input Sentence: a dog wit	n its mouth open is running .
a dog with its mouth is open running . a dog with its mouth is open running . a dog with its mouth is open running .	a dog with long hair is eating . a guy and the dogs are holding hands a dog with a toy at a rodeo .
Input Sentence: there are peop	le sitting on the side of the road
there are people sitting on the side of the road there are people sitting on the side of the road there are people sitting on the side of the road	the boy is walking down the street . there are people standing on the street outside the police are on the street corner .

VAE Bypassing Phenomenon

- Design considerations
- *z* is sampled and fed to the decoder
- Encode useful information in the latent space

- With bypass connection, the decoder has direct deterministic access to the source info
- Latent space ignored, KL divergence doesn't act as a regularizer

Diversity Evaluation Metrics

For a given input \boldsymbol{x} , generate multiple outputs $\boldsymbol{y}_1, \boldsymbol{y}_2, ..., \boldsymbol{y}_k$

Entropy

- Compute unigram probability p(w) of each word in the generated set
- $H = -\sum_{w} p(w) \log p(w)$
- More entropy \implies more randomness \implies more diversity

Distinct Scores

 Distinct-1 = Count of distinct unigrams Total unigram count
 Distinct-2 = Count of distinct bigrams Total bigram count

イロト 不得 トイヨト イヨト 二日

Effect on Latent Space

- VAE without hidden state initialization generates diverse outputs
- Bypass connection degrades the model to a deterministic AE

	VAE with Bypass	VAE without Bypass
Entropy	2.004	2.686
Distinct-1	0.099	0.302
Distinct-2	0.118	0.502

VAE with Bypass	VAE without Bypass
Input Sentence: the men	are playing musical instruments
the men are playing musical instruments the man is playing musical instruments the men are playing musical instruments	the men are playing video games the men are playing musical instruments the musicians are playing musical instruments
Input Sentence: a child	holds a shovel on the beach .
a child holds a shovel on the beach . a child holds a shovel on the beach . a child holds a shovel on the beach .	a child playing with the ball on the beach . a child holding a toy on the water . a child holding a toy on the beach .

Introduction

- 2 Background
- 3 Variational Autoencoder
- 4 Variational Encoder-Decoder Models

5 Conclusions

3

- Transform an input sequence (X) into a different output sequence (Y)
- E.g., machine translation, text summarization, dialog generation

4 1 1 4 1 1 4

Deterministic Attention [Bahdanau et al., 2014]

- Performance improvements to existing Seq2Seq models
- Align source information on the encoder side to target information on the decoder side
- During each timestep *j*, the decoder weights the source tokens
- Pre-normalized score: $\widetilde{\alpha}_{ji} = \mathbf{h}_{j}^{(tar)} W^{T} \mathbf{h}_{i}^{(src)}$
- Attention weights: $\alpha_{ji} = \frac{\exp\{\widetilde{\alpha}_{ji}\}}{\sum_{i'=1}^{|\mathbf{x}|} \exp\{\widetilde{\alpha}_{ji'}\}}$
- Unfortunately, deterministic attention serves as a **bypass** connection

Variational Attention

- Treat the **context vector** as a random variable with a pre-defined prior distribution
- With 2 latent spaces:

Loss Function

$$\begin{aligned} &J_{\mathsf{rec}}(\boldsymbol{\theta}, \boldsymbol{\phi}, \boldsymbol{y}^{(n)}) + \\ &\lambda \Big[\mathsf{KL} \left(q_{\boldsymbol{\phi}}^{(z)}(z|\boldsymbol{x}^{(n)}) \| \boldsymbol{p}(z) \right) + \\ &\gamma_{\boldsymbol{a}} \sum_{j=1}^{|\boldsymbol{y}|} \mathsf{KL} \left(q_{\boldsymbol{\phi}}^{(c_j)}(c_j|\boldsymbol{x}^{(n)}) \| \boldsymbol{p}(c_j) \right) \Big] \end{aligned}$$

 Two proposed priors p(c_j):
 𝒩(0, I)
 𝒩(h^(src), I), where h^(src) = 1/|x| ∑_{i=1}^{|x|} h_i^(src)

くほと くほと くほと

Experiment 1 - Question Generation

- Applications in ecommerce (generating FAQs), educational purposes
- Dataset: Stanford Question Answering Dataset (SQuAD)
- 100k question-answer pairs
- S: zinc is a chemical element with symbol zn and atomic number 30

Q: what is the symbol for zinc ?

Model	Inference	BLEU-1	BLEU-2	BLEU-3	BLEU-4	Entropy	Dist-1	Dist-2
DED (w/o Attn) [Du et al., 2017]	MAP	31.34	13.79	7.36	4.26	-	-	-
DED (w/o Attn)	MAP	29.31	12.42	6.55	3.61	-	-	-
DED+DAttn	MAP	30.24	14.33	8.26	4.96	-	-	-
	MAP	31.02	14.57	8.49	5.02	-	-	-
VED-DAttil	Sampling	30.87	14.71	8.61	5.08	2.214	0.132	0.176
VED DAtta (2 stage training)	MAP	28.88	13.02	7.33	4.16	-	-	-
VED+DAttil (2-stage training)	Sampling	29.25	13.21	7.45	4.25	2.241	0.140	0.188
	MAP	29.70	14.17	8.21	4.92	-	-	-
VED+VALLI-0	Sampling	30.22	14.22	8.28	4.87	2.320	0.165	0.231
	MAP	30.23	14.30	8.28	4.93	-	-	-
VED+VALLI-II	Sampling	30.47	14.35	8.39	4.96	2.316	0.162	0.228

- 4 同 ト 4 ヨ ト - 4 ヨ ト - -

Learning Curves

 Proposed models always have a higher diversity throughout training, while maintaining the BLEU scores

B ▶ < B ▶

Strength of Attention KL Term

Loss Function

$$J_{\text{rec}}(\boldsymbol{\theta}, \boldsymbol{\phi}, \boldsymbol{y}^{(n)}) + \lambda \Big[\mathsf{KL} \left(q_{\boldsymbol{\phi}}^{(z)}(z|\boldsymbol{x}^{(n)}) \| \boldsymbol{p}(z) \right) + \\ \boldsymbol{\gamma}_{\boldsymbol{a}} \sum_{j=1}^{|\boldsymbol{y}|} \mathsf{KL} \left(q_{\boldsymbol{\phi}}^{(c_j)}(c_j|\boldsymbol{x}^{(n)}) \| \boldsymbol{p}(c_j) \right) \Big]$$

- Low γ_a model behaves deterministically
- High γ_a achieves a higher diversity at the cost of output reconstruction performance

Hareesh Bahuleyan (UW)

Neural Variational Models

Experiment 2 - Dialog Systems

- Generative conversational agent
- Dataset: Cornell Movie-Dialogs Corpus
- 200k conversational exchanges from 617 movies
- M: so what should i do with the pudding? R: lets just leave it there for now.

Model	Inference	BLEU-1	BLEU-2	BLEU-3	BLEU-4	Entropy	Distinct-1	Distinct-2
DED+DAttn	MAP	5.75	1.84	0.99	0.64	-	-	-
VED+DAttn	MAP Sampling	5.33 5.34	1.68 1.68	0.88 0.89	0.57 0.57	- 2.113	- 0.311	- 0.450
$VED{+}VAttn{-}\overline{h}$	MAP Sampling	5.48 5.55	1.78 1.79	0.97 0.97	0.64 0.64	2.167	0.324	0.467

Qualitative Results

Source Reference	when the british forces evacuated at the close of the war in 1783 , they transported 3,000 freedmen for resettlement in nova scotia . in what year did the american revolutionary war end ?
VED+DAttn	how many people evacuated in newfoundland ? how many people evacuated in newfoundland ? what did the british forces seize in the war ?
VED+Vattn- \bar{h}	how many people lived in nova scotia ? where did the british forces retreat ? when did the british forces leave the war ?
Source	downstream , more than 200,000 people were evacuated from mianyang by june 1 in anticipation of the dam bursting .
Source Reference VED+DAttn	downstream , more than 200,000 people were evacuated from mianyang by june 1 in anticipation of the dam bursting . how many people were evacuated downstream ? how many people evacuated from the mianyang basin ? how many people evacuated from the mianyang basin ? how many people evacuated from the mianyang basin ?

Human Evaluation Study for Comparing Language Fluency

- Each model 100 generated questions
- 5 Flawless, 4 Good, 3 Adequate, 2 Poor, 1 Incomprehensible
- VED+DAttn ightarrow 3.99 ; VED+VAttn- $ar{h}
 ightarrow$ 4.01
- VAttn does not negatively affect the fluency of sentences

Hareesh Bahuleyan (UW)

1 Introduction

- 2 Background
- 3 Variational Autoencoder
- 4 Variational Encoder-Decoder Models

5 Conclusions

3

<ロ> (日) (日) (日) (日) (日)

- VAE for text generation was first designed, trained successfully by adopting (1) KL weight annealing, (2) Word dropout; Demonstrated the effectiveness of the latent space
- Negative impact of bypassing connections
- Traditional attention mechanism serves as bypassing. To circumvent this issue, variational attention is proposed
- Two possible priors to model the attention context vector
- Experiments on two tasks show that the proposed model yields higher diversity while retaining high quality of generated sentences.

References I

- Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. A diversity-promoting objective function for neural conversation models. arXiv preprint arXiv:1510.03055, 2015.
- Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the brain. *Psychological review*, 65(6):386, 1958.
- Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural* computation, 9(8):1735–1780, 1997.
- Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of words and phrases and their compositionality. In *Advances in neural information processing systems*, pages 3111–3119, 2013.
- Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*, 2013.
- Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy Bengio. Generating sentences from a continuous space. *arXiv preprint arXiv:1511.06349*, 2015.
- Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. *arXiv preprint arXiv:1409.0473*, 2014.
- Xinya Du, Junru Shao, and Claire Cardie. Learning to ask: Neural question generation for reading comprehension. arXiv preprint arXiv:1705.00106, 2017.

Hareesh Bahuleyan (UW)