Semi-Supervised Sequence Modelling with **Cross-View Training (CVT)**

Kevin Clark, Minh-Thang Luong, Christopher D. Manning, Quoc V. Le Stanford University | Google Brain

Hareesh Bahuleyan **Borealis Al**

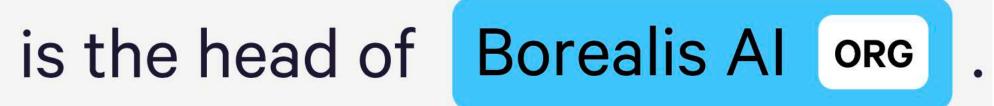
- Labelled data
 - Set of sequences with human annotated labels (e.g. sentiment)
- Unlabelled data
 - No labels (but data from the same domain)
 - Larger set

Problem Formulation

Sequence Tagging (NER) as Example

Predict a tag for each token in the sequence: Person, Location, Organization, Other

SpaCy NER: https://explosion.ai/demos/displacy-ent



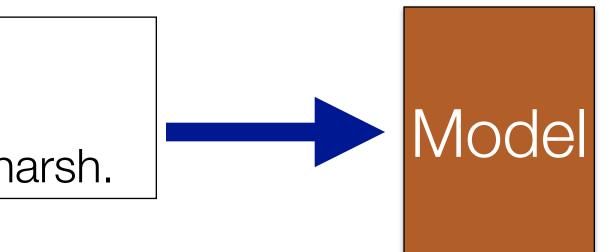
Classic Self-Training

1. Train the model with labelled data

Location The winter in **Montreal** is quite harsh.

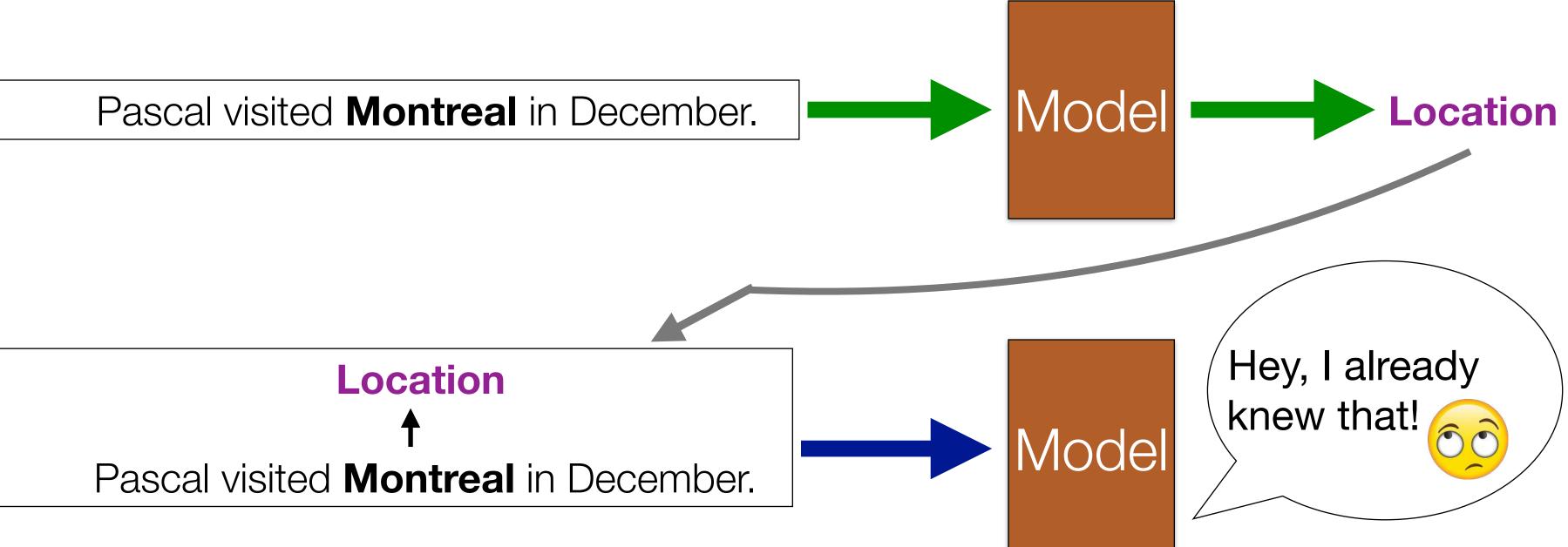
2. Ask the model to provide a prediction on an unlabelled data

machine-provided pseudo label to additionally train the model



Classic Self-Training

We are feeding the same information that the model already knows, back to the model !



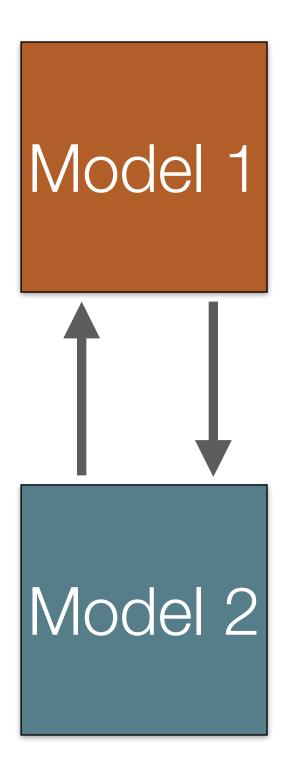
This approach seems tautological or circular !

Revisiting Co-Training (Blum and Mitchell, 1998)

In previous setup, the same model acts as both a teacher and a student that is trained on those predictions

Co-training :

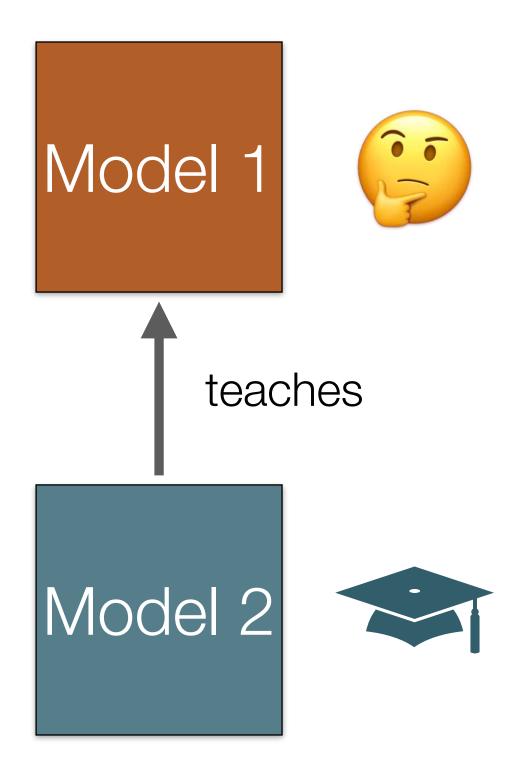
- Two models trained with disjoint views of the input
- On unlabeled data, each one acts as a "teacher" for the other model



Disjoint Views Example

- Example: "I wandered around the streets of **Montreal**"
- Model 1 sees "I wandered around ______
- Model 2 sees "_____ the streets of Montreal"

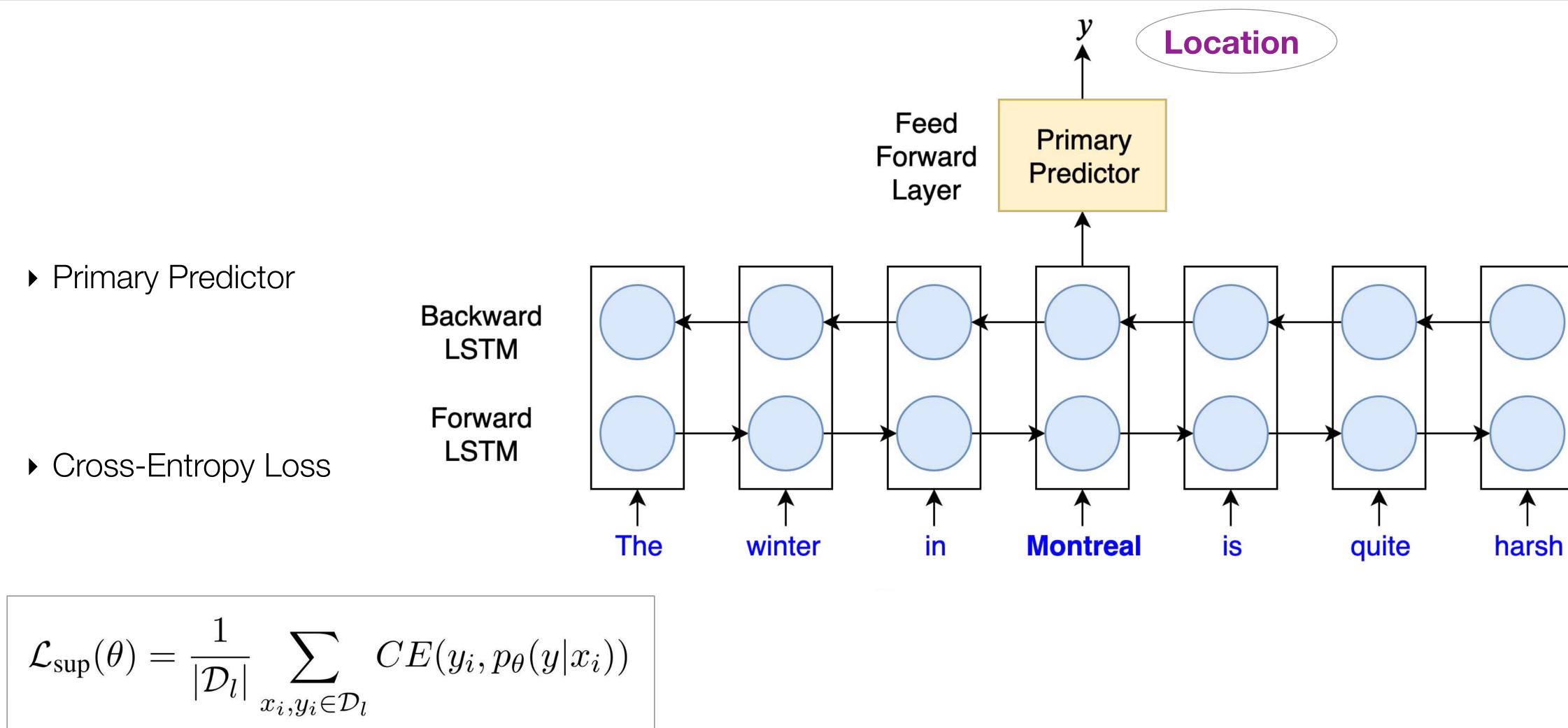
"



Adopting Co-Training to Neural Nets

- Two separate models, each one alone is not going to be great by itself since they see only part of the input.
- A neural network with some layers/parts shared, and other layers/parts are independent.
- Primary Predictor: They propose to train an additional model that sees the whole input sentence.
 - It can also be used at test time to make a prediction
- Auxiliary Predictors: see restricted views of the input
- Trained to produce consistent predictions across different views of the input
- The quality of representations are improved and more robust

Learning on Labelled Example



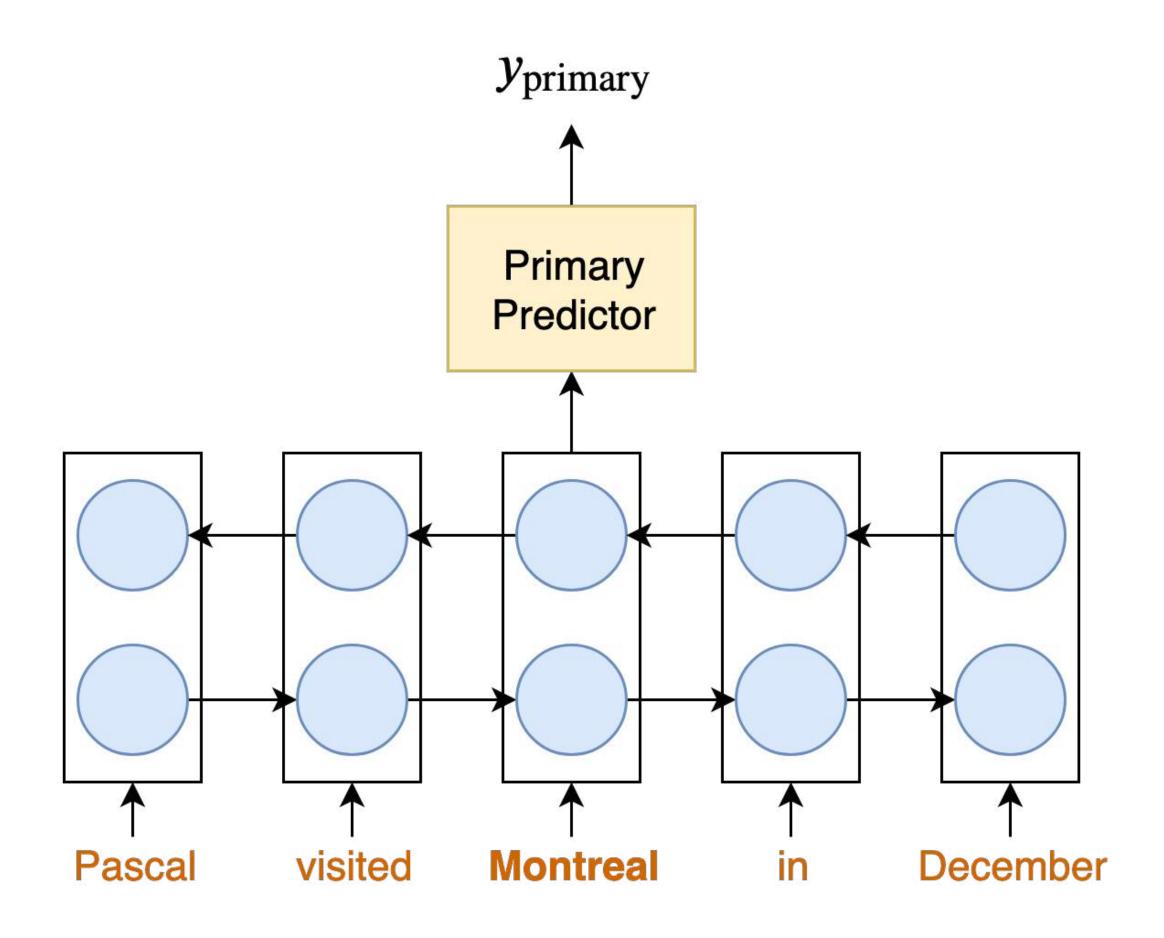
An what about Unlabelled examples?

Primary Predictor

- Do forward pass with the primary predictor has full view.
- Prediction module: feed forward layer followed by softmax

Backward LSTM

Forward LSTM

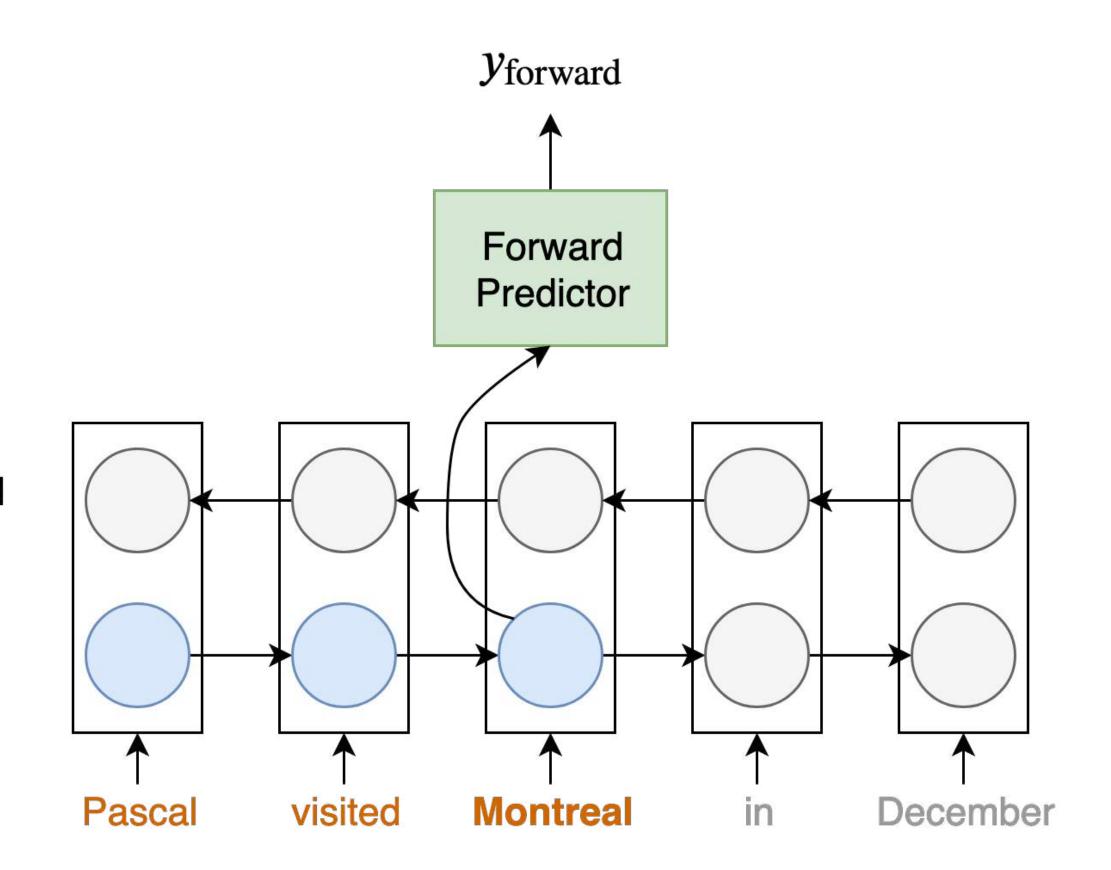


Auxiliary Predictor 1: Forward Predictor

- Partial view of the sentence
- Intermediate output of Forward LSTM
- Separate prediction module

Backward LSTM

Forward LSTM



Unlabelled Example Loss Computation

- On the unlabelled examples, loss function encourages y_forward to MATCH y_primary
- the auxiliary module

$$\mathcal{L}_{\text{CVT}}(\theta) = \frac{1}{|\mathcal{D}_{ul}|} \sum_{x_i \in \mathcal{D}_{ul}} \sum_{j=1}^k D(p_\theta(y|x_i), p_\theta^j(y|x_i))$$

- Back-prop through the auxiliary module (but not the primary module):

 - which will in turn improve the primary module
- Combine the supervised and CVT losses:

unlabeled examples

Minimizing KL divergence between the probabilities from the primary prediction module and

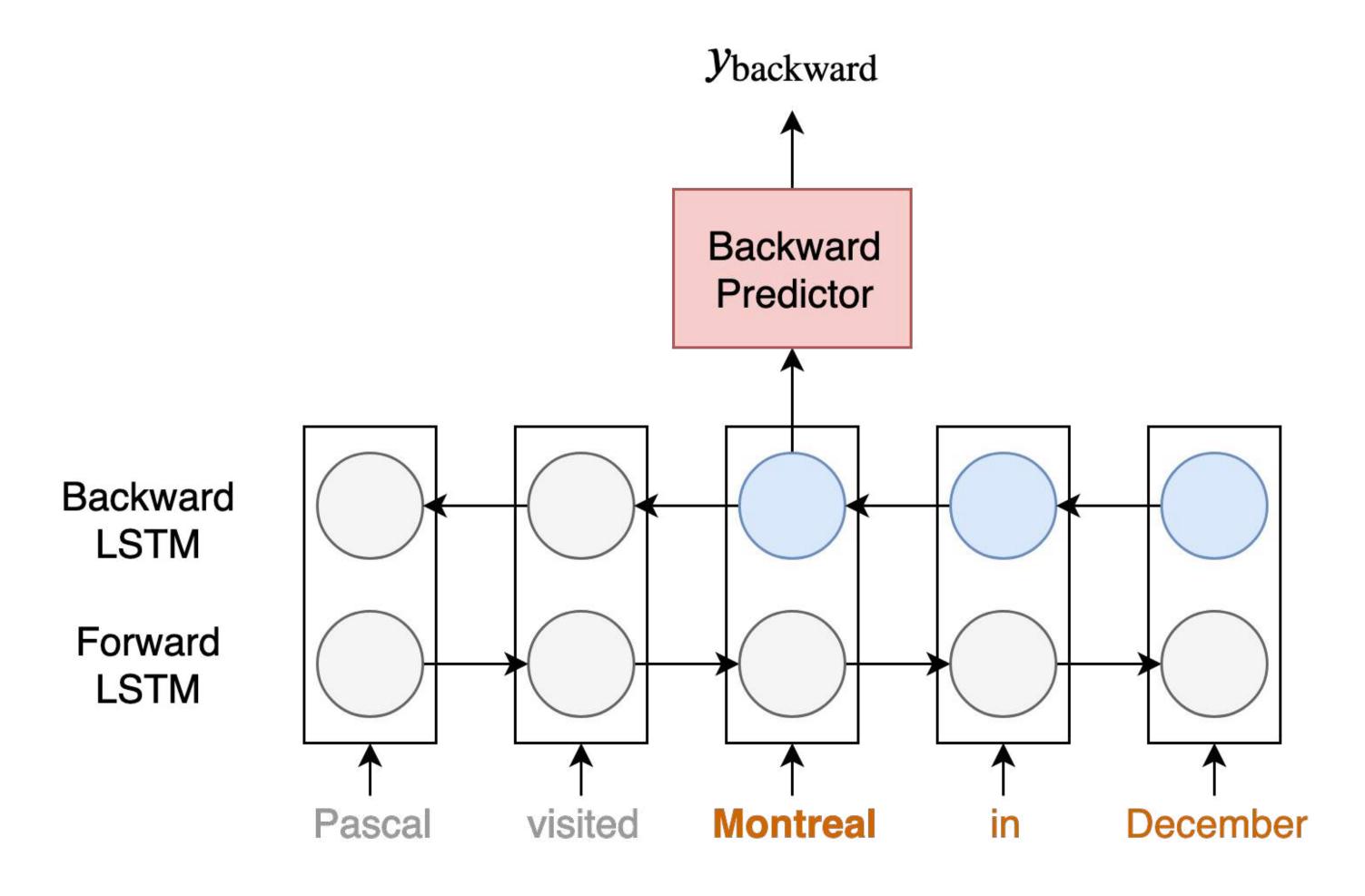
The hope is that the forward predictor *learns* from the primary predictor which sees more information

improves the representations from the layers/parts that are shared between the auxiliary and the primary

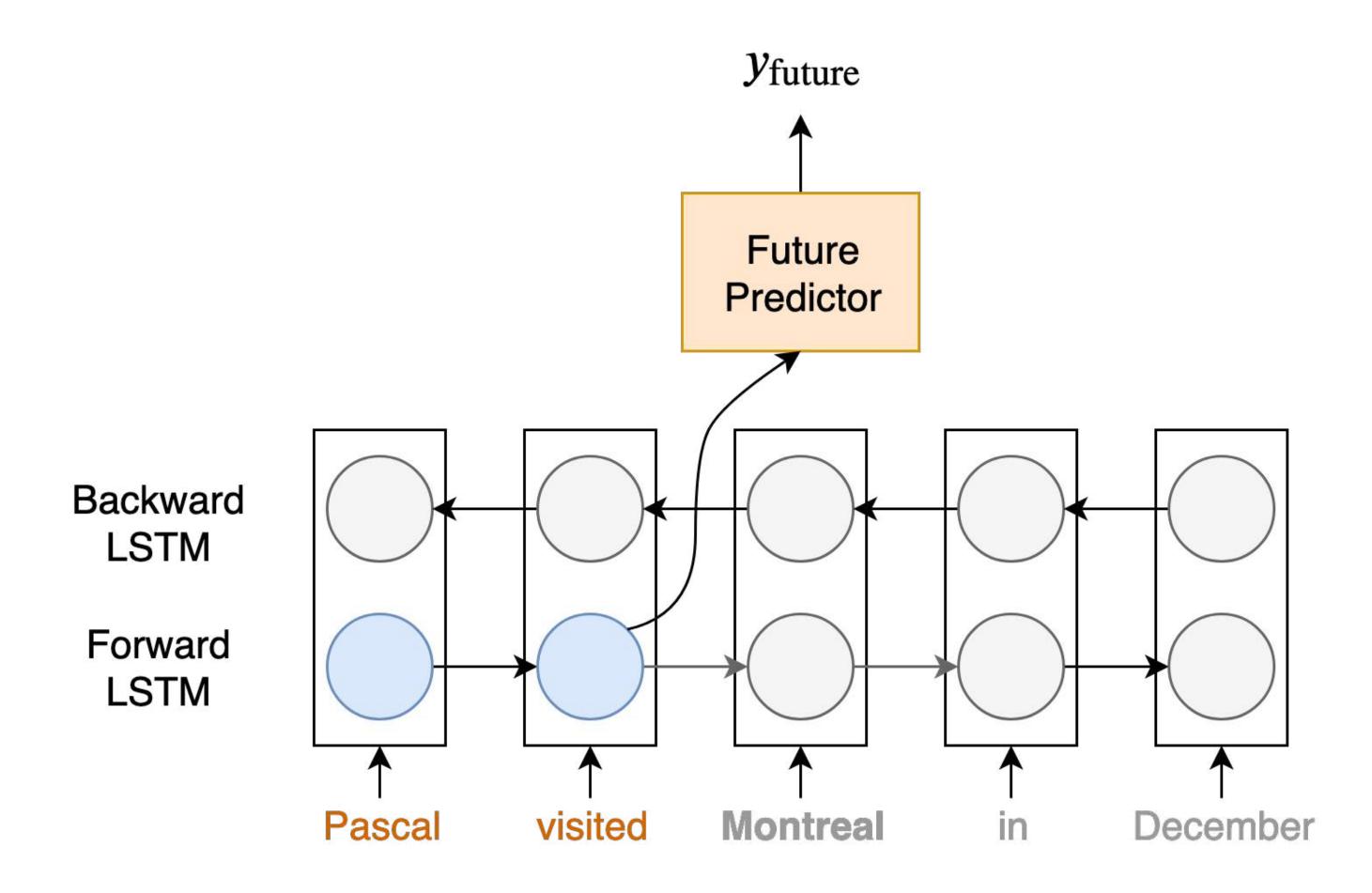
 $\mathcal{L} = \mathcal{L}_{ ext{sup}} + \mathcal{L}_{ ext{CVT}}$

 $m{\bullet}$ alternate minimizing $\mathscr{L}_{\sf SUP}$ over a mini-batch of labeled examples and minimizing $\mathscr{L}_{\sf CVT}$ over a mini-batch of

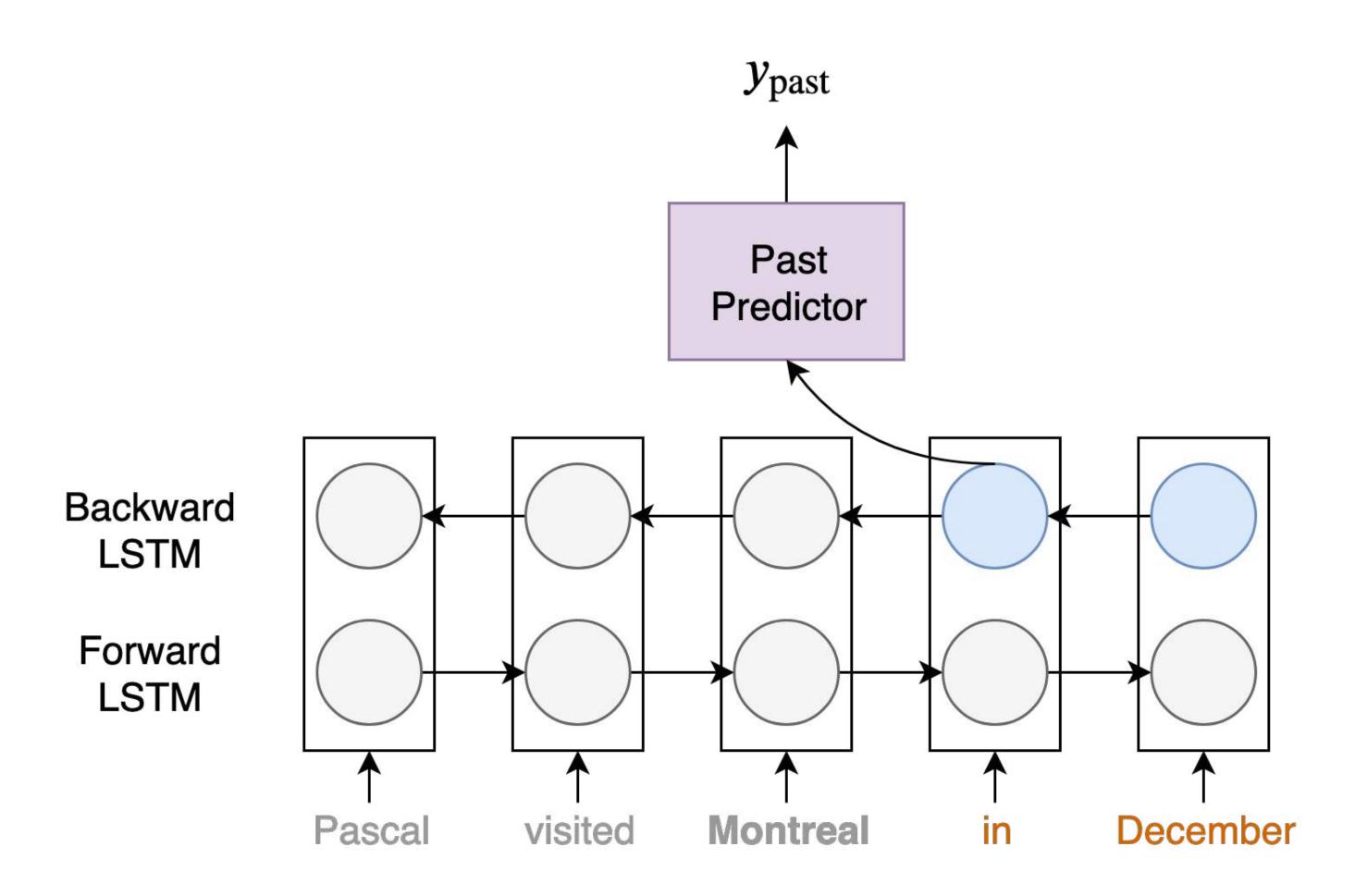
Auxiliary Predictor 2: Backward Predictor



Auxiliary Predictor 3: Future Predictor

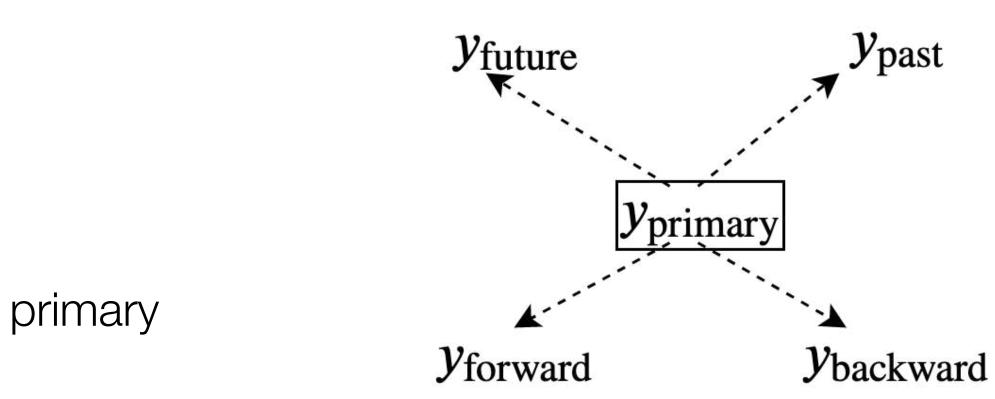


Auxiliary Predictor 4: Past Predictor



- Labelled example regular cross entropy
- Cross-View Training on <u>unlabelled</u> example:
 - Consistency between the predictions of the primary and the auxiliary modules
- At test time, only the primary module is needed to make a prediction

Putting it all together ...



Combining with Multi-task Training

Multi-task Learning

- Dataset A labelled for task A, Dataset B labelled for Task B and so on...
- Add a set of more predictors on top of the Bi-LSTM, one for each task (such as NER, POS tagging, etc.).
- On unlabelled examples, jointly train across all tasks at once:
 - first running forward pass with all the primary prediction modules and then;
 - Iearning from the predictions with all the auxiliary prediction modules.
- task!

• During supervised learning, randomly select a task and then update \mathscr{L}_{SUD} using a mini-batch of labeled data for that task.

Datasets labeled for multiple tasks are useful for multi-task systems to learn from, but most datasets are only labeled with one

A benefit of multi-task CVT is that the model creates (artificial) <u>all-tasks-labeled examples</u> from unlabeled data.

Experiments - Tasks

- ▶ 7 Tasks:
 - Named Entity Recognition
 - Text Chunking
 - Combinatory Categorial Grammar (CCG) Super-tagging
 - Fine-Grained NER
 - Part-of-Speech (POS) Tagging
 - Dependency Parsing
 - Machine Translation
- IBillionWord Corpus as a source of unlabelled data

Experiments - Baselines

Word Dropout

- Only primary prediction module
- In student mode: replace words with REMOVED token

Virtual Adversarial Training (Miyato et al., 2016)

- Only primary prediction module
- Add noise (chosen adversarially) to the word embeddings of the student
- ► **ELMo** (Peters et al., 2018)
 - Language model pre-training

Comparing CVT self-training and LM pre-training

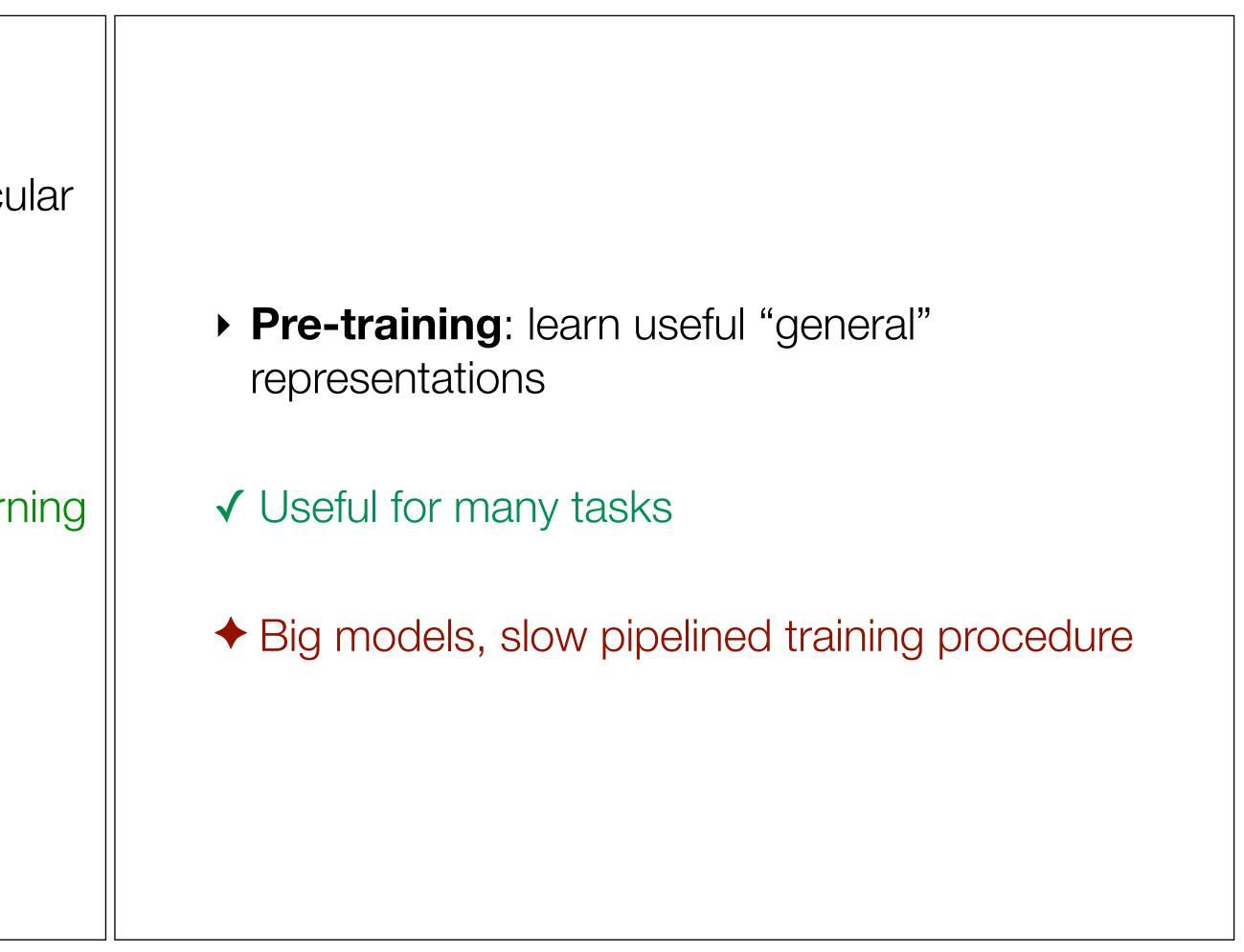
CVT: learn representations targeted to a particular task

✓ Comparable or better accuracy

✓ Works great in combination with multi-task learning

Requires (roughly) in-domain unlabeled data

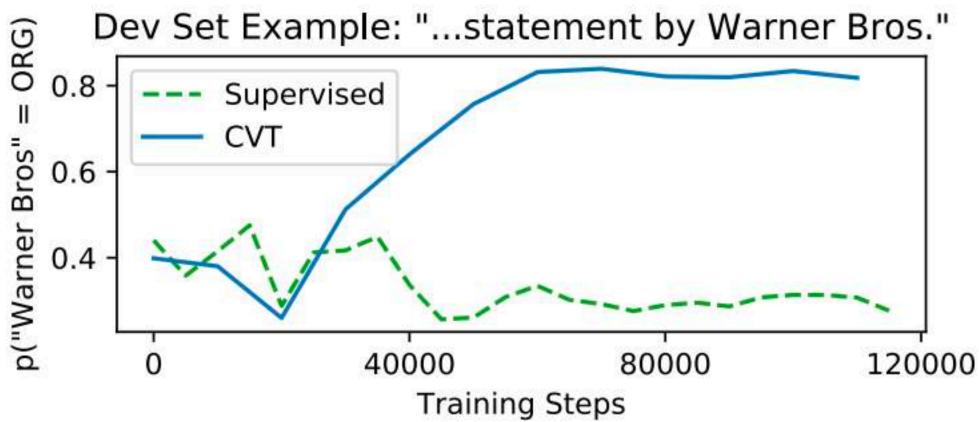
✦ Have to re-train for each task



Results

Method	CCG	Chunk	NER	FGN	POS	Dep.	Parse	Translate
	Acc.	F1	F1	F1	Acc.	UAS	LAS	BLEU
Shortcut LSTM (Wu et al., 2017)	95.1				97.53			
ID-CNN-CRF (Strubell et al., 2017)			90.7	86.8				
JMT [†] (Hashimoto et al., 2017)		95.8			97.55	94.7	92.9	
TagLM* (Peters et al., 2017)		96.4	91.9					
ELMo* (Peters et al., 2018)			92.2					
Biaffine (Dozat and Manning, 2017)						95.7	94.1	
Stack Pointer (Ma et al., 2018)						95.9	94.2	
Stanford (Luong and Manning, 2015)								23.3
Google (Luong et al., 2017)								26.1
Supervised	94.9	95.1	91.2	87.5	97.60	95.1	93.3	28.9
Virtual Adversarial Training*	95.1	95.1	91.8	87.9	97.64	95.4	93.7	_
Word Dropout*	95.2	95.8	92.1	88.1	97.66	95.6	93.8	29.3
ELMo (our implementation)*	95.8	96.5	92.2	88.5	97.72	96.2	94.4	29.3
ELMo + Multi-task* [†]	95.9	96.8	92.3	88.4	97.79	96.4	94.8	
CVT*	95.7	96.6	92.3	88.7	97.70	95.9	94.1	29.6
CVT + Multi-task* [†]	96.0	96.9	92.4	88.4	97.76	96.4	94.8	—
CVT + Multi-task + Large* [†]	96.1	97.0	92.6	88.8	97.74	96.6	95.0	-

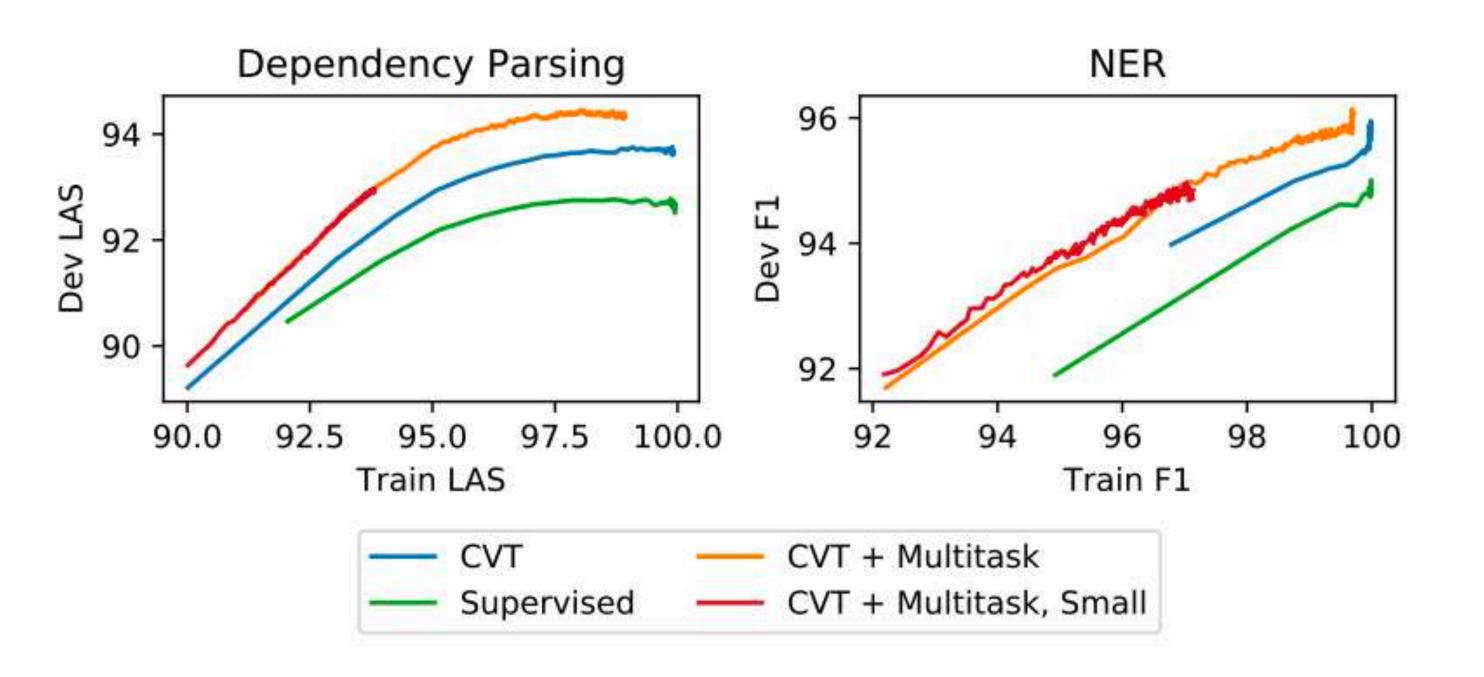
An Interesting Case



learns that "Warner Bros" is an organization.

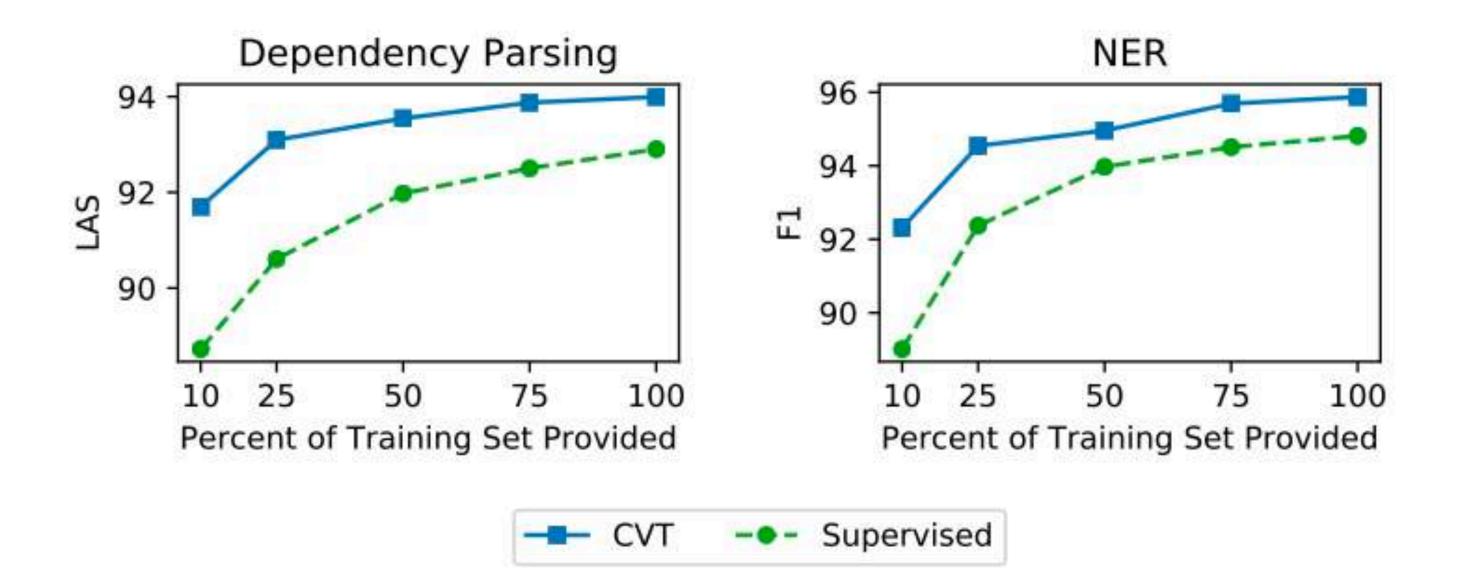
Figure 3: An NER example that CVT classifies correctly but supervised learning does not. "Warner" only occurs as a last name in the train set, so the supervised model classifies "Warner Bros" as a person. The CVT model also mistakenly classifies "Warner Bros" as a person to start with, but as it sees more of the unlabeled data (in which "Warner" occurs thousands of times) it

Effectiveness of combining CVT with Multi-Task training



Performance with size of Labelled Set

- 100% of the training data!
- Demonstrates that CVT is particularly useful on low resource setting



Using only 25% of the labeled data, CVT performs as well or better than a fully supervised model using

Does CVT provide generalizable representations?

- Training the CVT+multi-task model on five tasks
- Freeze the encoder, and then only training a prediction module on the sixth task (fine-tuning).
- This tests whether the encoder's representations generalize to a new task not seen during its training.

Model	CCG	Chnk	NER	FGN	POS	Dep.
Supervised	94.8	95.6	95.0	86.0	97.59	92.9
CVT-MT frozen	95.1	96.6	94.6	83.2	97.66	92.5
ELMo frozen	94.3	92.2	91.3	80.6	97.50	89.4

Table 4: Comparison of single-task models on the dev sets. "CVT-MT frozen" means we pretrain a CVT + multi-task model on five tasks, and then train only the prediction module for the sixth. "ELMo frozen" means we train prediction modules (but no LSTMs) on top of ELMo embeddings.

- CVT: A method that uses a mix of labeled and unlabeled data
- On labeled examples —> standard supervised learning
- On unlabeled examples -> CVT teaches auxiliary prediction modules that see restricted views of the input (e.g., only part of a sentence) to match the predictions of the full model seeing the whole input

- Results: CVT is particularly effective when combined with multi-task learning
- Five sequence tagging tasks, machine translation, dependency parsing -> achieves state-of-the-art results
- A general framework for semi-supervised learning that can be applied to many tasks

Summary



Thank You

Machine Translation

- For the seq2seq (machine translation) case, there are two auxiliary predictors
 - a fraction of its attention weights

 - distribution over the vocabulary from the primary decoder at each time step
 - on the input sequence -> used to train the auxiliary modules

• For the first one, restricted view of the input is obtained by applying attention dropout, randomly zeroing out

• The second one is trained to predict the next word in the target sequence rather than the current one

Since there is no target sequence for unlabeled examples, <u>cannot apply teacher forcing</u> to get an output

Instead, produce hard targets for the auxiliary modules by running the primary decoder with beam search

