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Autoencoding (Deterministic)

@ Obtain a compr.esse_d .represe.ntatlon of the
data x from which it is possible to
re-construct it P ‘

e Encoder g4(z|x) and Decoder pg(x|z) are | Latemspace |
jointly trained to maximize the conditional | y
|og—|ike|ihood Encoder g4(Z | X) ’ Decoder py(X | Z) ‘

A
@ The latent representation z has an arbitrary
distribution

Encoder Decoder

Observed Data Space

Minimize Reconstruction Loss

= — 11 log p(x(M[z("))
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Variational Autoencoder [Kingma and Welling, 2013]

@ Enforce a distribution on the latent space

e Minimize the Kullback-Leibler (KL)
divergence between the learnt posterior and @
a pre-specified prior: KL(N (, o)||N (0, 1)) :

. Latent Space
@ Balance between reconstruction and KL

penaly tem e 121

e High X - Ignores reconstruction x
o Low A - Deterministic behaviour :

Z=pu+oe

H .

Encoder /\ Decoder
N (;4, o'z)

Observed Data Space

Minimize Reconstruction Loss + KL Divergence

J=X0a [ B [ogp(? )] + 4 KU(a(=1x)p(2))|
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Reparameterization Trick

KL Divergence between posterior and standard normal prior

KL (11, 0)|IN(0, 1)) = 3(1 + log((e(M)?) = (u{M)? — (¢("))?)

@ Model training via SGD and error backpropagation

@ Cannot sample directly from the approximate posterior distribution
N(p,0)

@ Stochastic Node - disconnect in the graph

@ Solution: Sample from fixed distribution A(0, /) and reparameterize

@ z=p+ 0 e where e ~ N(0,/)

Original form Reparameterized form

f Backprop
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MNIST Experiments

@ Toy Example - Compress image to 2d latent space and reconstruct

CENOV A WN O
WSOV A WN O

Figure: Deterministic AE Figure: Variational AE

o F = = DA
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MNIST Experiments

@ Toy Example - Compress image to 2d latent space and reconstruct
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Figure: VAE Reconstructions from different parts of the latent space
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Text VAEs

Encoder Decoder

_______________________________

Figure: Model Architecture

@ Trained on a subset of SNLI Dataset [Bowman et al., 2015a]
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Training Heuristics

@ Training VAEs for text generation is notoriously difficult
o Adopt two training strategies [Bowman et al., 2015b]

KL Weight Annealing

@ Gradually increase A\ from zero to a threshold value

@ Deterministic autoencoder — Variational autoencoder

@ Experiment with different annealing schedules

Word Dropout

@ Replace decoder inputs with
<UNK> with probability p

@ Weakens the decoder and

encourages the model to encode

more information into z
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| reside in waterloo <EOS>
<S0S> ! <UNK> in <UNK>
Decoder
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Random Sampling

@ VAEs exhibit interesting properties due to their learnt latent space
@ Continuous latent space = meaningful sentences
@ Discard encoder; Sample from prior N'(0, /) and generate

o New and interesting sentences unseen in the training data

Latent Space

‘ Deterministic AE ‘ Variational AE ‘

a men wears an umbrella waits to the dog is sleeping in the grass .
a couple cows a monument the girls are being detained .
there is sleeping and two rug . the group of people are going to begin . 3
a man in a pick photos a girl with blond-hair on a bike with a stick h |
a boy are people at a lake escape . | a woman and a man are walking on a street Decoder

A4
(%]
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Linear Interpolation

@ To test the continuity of the latent space

° z,, =« -za+ (1 — ;) - zg where o € [0

1 2 3 4
» 575757 5

1]

@ VAE - Smooth transition maintaining syntax and semantics

@ DAE - Transition is irregular and non-continuous

‘ Deterministic AE

Variational AE

‘ Sentence A: there is a couple eating cake .

there is a couple eating cake .

there is a couple eating cake .

there is a couple eating cake .

there is a group of people eating a party .
a group of men are watching a party .

a group of men are watching a dance party .
a group of men are watching a dance party .
a group of men are watching a dance party .

there is a couple eating cake .

there is a couple eating .

there is a couple eating dinner .

there is a couple of people eating dinner .

a group of people are having a conversation .
a group of men are having a discussion .

a group of men are watching a movie .

a group of men are watching a movie theater .

Sentence B: a group of men are watching a dance party .
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Sampling from Neighborhood

@ For a given input x, sample the latent vector as
z=p+3c®ce¢

@ VAE - generates diverse sentences, however
topically similar to the input.

@ DAE - latent space has empty regions

A

Encoder

‘ Deterministic AE Variational AE

‘ Input Sentence: a dog with its mouth open is running .
a dog with its mouth is open running . a dog with long hair is eating .
a dog with its mouth is open running . a guy and the dogs are holding hands
a dog with its mouth is open running . a dog with a toy at a rodeo .

Input Sentence: there are people sitting on the side of the road

Decoder

there are people sitting on the side of the road | the boy is walking down the street .
there are people sitting on the side of the road | there are people standing on the street outside
there are people sitting on the side of the road | the police are on the street corner .
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CVAEs [Sohn et al., 2015]

@ Regular VAE - no control over the class of data being generated
@ CVAEs - flexibility to synthesize data from the desired class

Minimize Reconstruction Loss + KL Divergence

Salr | = B [log p(x(M]2"), )] +A-KL(q(2"|x("), ) p(z]c(")))
z\N~q

Encoder Decoder

X —> — > X
/ S /

Latent Space z
Cc c

Figure: CVAE Model Architecture
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Hypothesis for Outlier Detection

99.7% of the data are within .
k"3 standard deviations of the mean ———————> @ Data points further away
95% within
2 standard deviations —] from the mean are less
68% within
«<— 1 standard —| prOba ble

deviation

@ More likely to be outliers
@ For Apollo: Novel news
detection
o Why CVAE: News articles
= conditioned on specific
n—30 H-20 p-o P u+o  p+20 1+ 30 )
companies or sectors or even

Figure: Univariate Normal distribution news history
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Preliminary Experiments with MNIST
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Figure: Samples from conditional prior of digit ‘8" - Blurry images when sampled

away from the mean (centre)
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Preliminary Experiments with MNIST

Figure: Sampling at different distances from the mean (origin)
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Text Data

Yahoo Questions Dataset
o Conditioning Variable - Topic Label Embedding
@ Subset of 100k questions

Label Embedding
hy

Decoder

=TT

e 0L

Sampled

Figure: CVAE Model Architecture

Encoder

>

Latent

Vector
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Conditionally Generated Text

Samples drawn from the conditional posterior distribution of two topics:

‘ Health ‘ Sports ‘
how would i find my molar reaction ? can you find a alternative mountain bike ?
what type of oily skin ? why is the superbowl so amazing by brand ?
how does spinach go for the fat and vegetable 7 whats your favorite swim team on each 7
how to control the swelling for this burning ? why is the boxing championships ?

what is that mental disorder that i have one 7 | what is a club to be playing from the computer 7
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Sentences and Distances

Table: Success Cases

@ Created fake how do you get rid of herpes ? 28.8
. do lawyers cause herpes ? 42.1
qu estions .
how soon can you know if you are pregnant 7 | 43.2
o Topic: Health how soon can you touch fresh paint ? 53.4
how can i grow my hair back ? 42.0
are bald people good at doing business ? 50.7
@ Lower distances for
shorter sentences Table: Failure Cases
@ Use of rare words how old were you before you were able to grow a good looking beard ? | 63.5
resu ItS in h igher do you need a hammer to construct a good looking beard ? 56.5
. how to relieve severe itchy skin ? 52.4
d Istances how do police relieve severe criminals ? 47.9
should human genetic engineering be allowed ? .
should human build artificial intelligence ? 38.4
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@ Conclusions and Future Work
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Conclusions and Future Work

e Summary
o VAEs are generative models from which it is possible to synthesize new

data
o The usage of CVAEs for novelty/anomaly detection based on euclidean
distance

@ Issues
o For VAEs with textual data, the basis for clustering probably has to do
more with syntax rather than semantics
o Gaussian latent space and euclidean distance may not be appropriate in
high dimensions

@ Next Steps
o Spherical VAEs based on von Mises Fisher Distribution - data is
distributed on a unit hypersphere - cosine similarity as distance metric
Xu and Durrett [2018]
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